付費限定

混合設計變異數分析簡介

更新於 發佈於 閱讀時間約 3 分鐘

混合設計變異數分析 (mixed-design ANOVA) 是一種統計方法,用於分析具有兩種或更多因子的實驗數據。其中一種因子稱為獨立因子,另一種因子稱為相依因子。獨立因子是實驗設計中的自變量,它的不同水平在不同的觀察單位之間是獨立的。相依因子是實驗設計中的因變量,它的值在不同的觀察單位之間是相依的。混合設計變異數分析可以用來確定獨立因子對相依因子的影響。

raw-image

緒論

雙因子混合設計和雙因子獨立變異數分析相同,都是要檢定A因子主要效果、B因子主要效果和AB因子交互作用。

例如:

A因子為性別:男生和女生,每個人只會是其中一個,所以是獨立因子
B因子為數學考試時間點:前測,中測,後測,每個人3個都有,所以是相依因子
依變項:數學考試分數 1-100 連續變項

如果A因子主要效果顯著,因為只有兩個水平,可以看平均數確認大小,並進行獨立樣本t檢定驗證順序大小。

如果B因子主要效果顯著,因為只有三個水平,需要進行單因子相依變異數分析。

如果AB因子交互作用就要進行單純主要效果,這時探討A或B因子的主要效果都沒有實際意義了!

混合設計變異數分析 (mixed-design ANOVA) 的假設包括:

  1. 獨立因子的不同水平在不同的觀察單位之間是獨立的。
  2. 相依因子的值在不同的觀察單位之間是相依的。
  3. 不同獨立因子在依變項上的變異數具有同質性
  4. 相依因子符合球型假定

這些假設是基於統計學理論上的條件,如果這些假設不成立,那麼混合設計變異數分析的結果就可能是不可靠的。

SPSS上機

首先如下圖定義相依因子

raw-image

然後把對應的相依因子水平拉到右邊,事後選項中,若獨立因子主要效果顯著,且具有兩個水平以上,需要做事後比較。事後比較獨立因子選擇事後比較選擇請參考

raw-image

再設置相依因子事後比較,把數學考試放到右框框。若相依因子主要效果顯著,且具有兩個水平以上,需要做事後比較。

raw-image

最後,再按選項中的同質性檢定。確定分析

以行動支持創作者!付費即可解鎖
本篇內容共 2403 字、3 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
教育心理博士的筆記本
254會員
145內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
看更多
你可能也想看
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
變異數和共變數分析通常有一些統計的前提假設。如果在進行這些分析時,假設沒有達到滿足,結果將有所偏誤,更可能被審稿者或口委批評。本文首先介紹如何檢測這些假設,然後提出假設不過的解決方法,並附上相關文獻佐證。
Thumbnail
變異數和共變數分析通常有一些統計的前提假設。如果在進行這些分析時,假設沒有達到滿足,結果將有所偏誤,更可能被審稿者或口委批評。本文首先介紹如何檢測這些假設,然後提出假設不過的解決方法,並附上相關文獻佐證。
Thumbnail
前面兩篇會刻意提到共變數,除了因為共變數在多變量統計裡面非常重要之外,最主要的原因其實是為了解釋皮爾森相關係數而做鋪陳。 相關係數的種類也相當的繁多,這裡介紹的皮爾森相關大概是最常看到的一種啦~
Thumbnail
前面兩篇會刻意提到共變數,除了因為共變數在多變量統計裡面非常重要之外,最主要的原因其實是為了解釋皮爾森相關係數而做鋪陳。 相關係數的種類也相當的繁多,這裡介紹的皮爾森相關大概是最常看到的一種啦~
Thumbnail
如果看過上一篇還不太確定共變數要怎麼計算,這篇會用圖像的方式來進行解釋,最後也會提及共變數的小缺點。
Thumbnail
如果看過上一篇還不太確定共變數要怎麼計算,這篇會用圖像的方式來進行解釋,最後也會提及共變數的小缺點。
Thumbnail
本文章將介紹實務中進行HLM會需要注意的事項,包含樣本量要求、基本假設、計算解釋變異量和HLM建構策略。
Thumbnail
本文章將介紹實務中進行HLM會需要注意的事項,包含樣本量要求、基本假設、計算解釋變異量和HLM建構策略。
Thumbnail
在前面的文章裡, 我們談了很多機率的概念, 今天我們來聊聊統計學裡最基礎的研究方法: 迴歸分析。
Thumbnail
在前面的文章裡, 我們談了很多機率的概念, 今天我們來聊聊統計學裡最基礎的研究方法: 迴歸分析。
Thumbnail
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
Thumbnail
當我們要確定問卷量表在不同群體(例如:男生和女生)的適用和一致性時,我們就使用多群組測量衡等性檢驗在不同群體,因素和觀察變項之間的關聯是一致。則代表之後統計結果是可信的,反映出真實結果,並非只是量表誤差造成的。
Thumbnail
題目打包法(Item Parceling)是一種統計學方法,主要用於結構方程模式(SEM)中。打包法的基本思想是將多個觀察指標打包成一個新指標,以提高模型的擬合程度。打包法有很多優點,如提高模型的擬合程度和要求樣本數減少。但也有缺點,如不適合測量模型分析。本文將簡介題目打包法之策略。
Thumbnail
題目打包法(Item Parceling)是一種統計學方法,主要用於結構方程模式(SEM)中。打包法的基本思想是將多個觀察指標打包成一個新指標,以提高模型的擬合程度。打包法有很多優點,如提高模型的擬合程度和要求樣本數減少。但也有缺點,如不適合測量模型分析。本文將簡介題目打包法之策略。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News