[Python] 語音技術與應用:語音轉文字

更新於 發佈於 閱讀時間約 1 分鐘
在這篇文章中,我們將講解一些常見的語音技術以及如何在Python中使用這些技術。

安裝套件

pip install pyaudio
pip install SpeechRecognition

匯入套件

import speech_recognition as sr
import pyttsx3
import os

語音辨識:

# 設置語音引擎
engine = pyttsx3.init()

# 設置語音識別器
r = sr.Recognizer()

# 設置麥克風作為音訊來源
with sr.Microphone() as source:
print("說些什麼吧!")
audio = r.listen(source)

# 將語音轉換為文字
try:
text = r.recognize_google(audio, language='zh-TW')
print("您說的是:" + text)
except sr.UnknownValueError:
print("語音無法識別!")
text = "語音無法識別"
except sr.RequestError as e:
print("無法連接到語音識別服務: {0}".format(e))
text = "無法連接到語音識別服務"
avatar-img
68會員
126內容數
這裡將以輕鬆風格,深入探討程式設計的基礎和高級概念。從程式語言到演算法,我們將以易懂的方式解釋每個主題,讓你輕鬆掌握。無論你是初學者或有經驗者,都能在這裡找到適合你的內容。無論你的目標是成為專業開發者還是擴展知識,我們都會陪伴你一同成長!
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
程式輕鬆玩 的其他內容
安裝 pyautogui 在開始之前,我們需要先安裝 pyautogui 模塊。你可以在終端或命令提示字元中輸入以下命令來安裝它: 1.移動滑鼠 2.模擬滑鼠點擊 3.模擬滑鼠拖曳 4.捲動滑鼠
使用 pyautogui 套件來取得所有正在視窗 (windows)。
安裝 pyautogui 在開始之前,我們需要先安裝 pyautogui 模塊。你可以在終端或命令提示字元中輸入以下命令來安裝它: 1.移動滑鼠 2.模擬滑鼠點擊 3.模擬滑鼠拖曳 4.捲動滑鼠
使用 pyautogui 套件來取得所有正在視窗 (windows)。
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
本文利用pyqt5,使用pyttsx3將QLineEdit(單行輸入框)的字串,轉成語音呈現出來。
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
  我們在語音初探篇提到TTS的流程可以分成三個部分 :輸入前處理、預測音訊特徵、語音重建,其中輸入前處理的部分上兩篇已經處理完,在進入預測音訊特徵前,讓我們先來理解最後的語音重建部分。
Thumbnail
  在 AI 應用中,圖像、語音、文字三種可以說是主要應用,其中我一直以來都是專注於圖像上的研究,對於另兩種僅止於淺嚐,接下來就往音訊上研究看看,先從入門級的Text-To-Speech (TTL) 入場並一個個嘗試其他類型的應用,那麼,就讓我們開始吧。
Thumbnail
免費文字轉語音(Free text to speech)免費的線上語音合成工具,使用微軟 AI 語音庫生成仿真人語音,支援 129 種語言,提供三百多種聲音,輸入文本即可線上聆聽和下載 MP3 檔案。
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
torchaudio 是 PyTorch 的官方音訊處理庫,提供了許多用於音訊數據讀取、轉換和處理的工具和功能。它旨在簡化音訊數據的加載、預處理和後續處理過程,同時與 PyTorch 緊密整合, 包括我們常常用於資料科學處理的Tensor資料。 這個篇章主要在分享我們如何使用標準的I/O進行讀
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
本文利用pyqt5,使用pyttsx3將QLineEdit(單行輸入框)的字串,轉成語音呈現出來。
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
  我們在語音初探篇提到TTS的流程可以分成三個部分 :輸入前處理、預測音訊特徵、語音重建,其中輸入前處理的部分上兩篇已經處理完,在進入預測音訊特徵前,讓我們先來理解最後的語音重建部分。
Thumbnail
  在 AI 應用中,圖像、語音、文字三種可以說是主要應用,其中我一直以來都是專注於圖像上的研究,對於另兩種僅止於淺嚐,接下來就往音訊上研究看看,先從入門級的Text-To-Speech (TTL) 入場並一個個嘗試其他類型的應用,那麼,就讓我們開始吧。
Thumbnail
免費文字轉語音(Free text to speech)免費的線上語音合成工具,使用微軟 AI 語音庫生成仿真人語音,支援 129 種語言,提供三百多種聲音,輸入文本即可線上聆聽和下載 MP3 檔案。
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
torchaudio 是 PyTorch 的官方音訊處理庫,提供了許多用於音訊數據讀取、轉換和處理的工具和功能。它旨在簡化音訊數據的加載、預處理和後續處理過程,同時與 PyTorch 緊密整合, 包括我們常常用於資料科學處理的Tensor資料。 這個篇章主要在分享我們如何使用標準的I/O進行讀
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。