使用 OpenAI Whisper API 進行語音轉文字,方便字幕後製或內容整理

更新於 發佈於 閱讀時間約 6 分鐘

前提

註冊 OpenAI 的 API ,並取得 SECRET KEY,然後填到程式裡面的 openai.api_key 裡。

基本的 Python 知識以及 Debug 能力。

raw-image

程式碼, Python實現

import openai
from pydub import AudioSegment
import os
import codecs
import tempfile

# Set your OpenAI API key here
openai.api_key = 'your_openai_api_key'

def transcribe_audio_with_whisper(audio_file_path):
"""
Transcribe an audio file using OpenAI's Whisper API.

Args:
- audio_file_path: Path to the audio file to transcribe.

Returns:
- The transcribed text as a string.
"""
with open(audio_file_path, "rb") as audio_file:
response = openai.Audio.transcribe('whisper-1', audio_file)
return response['data']['text']

def split_and_transcribe_audio(file_path, segment_length_seconds=30):
try:
song = AudioSegment.from_file(file_path)
except Exception as e:
raise Exception(f"Error loading audio file: {e}")

segment_length_ms = segment_length_seconds * 1000 # Correct calculation of milliseconds
transcripts = []

with tempfile.TemporaryDirectory() as temp_dir:
for i, segment in enumerate([song[i:i+segment_length_ms] for i in range(0, len(song), segment_length_ms)]):
segment_file_path = os.path.join(temp_dir, f"segment_{i}.mp3")
segment.export(segment_file_path, format="mp3")

transcript = transcribe_audio_with_whisper(segment_file_path)
time_in_seconds = i * segment_length_seconds
timestamp = f"[{time_in_seconds // 60:02d}:{time_in_seconds % 60:02d}]"
transcripts.append(timestamp + " " + transcript)

output_file_name = os.path.splitext(os.path.basename(file_path))[0] + '.txt'
with codecs.open(output_file_name, 'w', encoding='utf-8') as f: # Using UTF-8 encoding
f.write("\n".join(transcripts))

# Example usage
split_and_transcribe_audio("test.mp3")

解釋

  1. 設置OpenAI API SECRET:需要在程式中設定你的OpenAI API鑰匙,以便使用Whisper API。
  2. transcribe_audio_with_whisper 函數
    • 功能:使用 OpenAI 的 Whisper API 轉寫給定的音訊檔案。
    • 參數:接受一個參數 audio_file_path,即需要轉寫的音訊檔案路徑。
    • 返回值:返回轉寫後的文字。
    • 實現方式:通過讀取音訊檔案並使用 openai.Audio.transcribe 方法來獲得轉寫結果。
  3. split_and_transcribe_audio 函數
    • 功能:將長音訊檔案分割成較小的片段(預設為30秒長),然後使用Whisper API轉寫每個片段。
    • 參數:file_path:長音訊檔案的路徑。segment_length_seconds:每個音訊片段的時長(秒),默認為30秒。
    • 過程:使用 AudioSegment.from_file 加載音訊檔案。根據指定的片段長度(毫秒)將音訊分割成多個片段。為每個片段創建一個臨時文件,然後將其導出為MP3格式。對每個片段使用 transcribe_audio_with_whisper 函數進行轉寫。將轉寫結果和對應的時間戳添加到轉寫列表中。
    • 輸出:將所有轉寫結果連同時間戳寫入到一個以原音訊檔案名命名的純文字文件中(換成 .txt)。

範例用法:程式最後展示了如何使用 split_and_transcribe_audio 函數來轉寫名為 "test.mp3" 的音訊檔案。


留言
avatar-img
留言分享你的想法!
avatar-img
Wei 的工程師聊什麼
3會員
3內容數
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
免費文字轉語音(Free text to speech)免費的線上語音合成工具,使用微軟 AI 語音庫生成仿真人語音,支援 129 種語言,提供三百多種聲音,輸入文本即可線上聆聽和下載 MP3 檔案。
Thumbnail
免費文字轉語音(Free text to speech)免費的線上語音合成工具,使用微軟 AI 語音庫生成仿真人語音,支援 129 種語言,提供三百多種聲音,輸入文本即可線上聆聽和下載 MP3 檔案。
Thumbnail
合成聲音技術的未來充滿希望,也存在挑戰。OpenAI呼籲社會各界一起加強對這一新興技術的認識,並共同探索如何有效地利用這項技術,同時保護公眾免受潛在的負面影響。
Thumbnail
合成聲音技術的未來充滿希望,也存在挑戰。OpenAI呼籲社會各界一起加強對這一新興技術的認識,並共同探索如何有效地利用這項技術,同時保護公眾免受潛在的負面影響。
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
瞭解讓AI寫文章的好處,包括提高效率、快速獲取答案和資料整理
Thumbnail
瞭解讓AI寫文章的好處,包括提高效率、快速獲取答案和資料整理
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
Thumbnail
本文提供如何使用 Google Colab 結合 Faster Whisper 來提升語音辨識速度與準確性,包含安裝指南與使用方法。探索如何將語音轉換為文本,並對檔案進行不同格式的輸出。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News