AI Booster - Scale AI (2)

更新 發佈閱讀 3 分鐘

Our mission is to accelerate the development of AI applications

raw-image

這系列文章是透過蒐集、分享我覺得有意思AI服務、相關文章、影片,期許自己能更了解這世界上正在發生什麼。

上一篇初步介紹了Scale 的願景和實現願景的第一步-資料標註後,本篇繼續來討論Scale AI的產品和產業應用。



Scale Rapid

Scale Rapid 是Scale打造高效量產標註的主力平台之一,協助用戶從原本需花數日到數月的資料標註工作縮短至數小時內。用戶可以在Scale Rapid上傳自己的資料集選擇使用案例(Use case)建立分類標準法則提供標註的指令說明等調校後,即可批量標註

Image credit: Scale AI

Image credit: Scale AI

用戶可以上傳資料格式豐富,包含從本機端上傳檔案、csv、AWS S3、Google雲端硬碟、微軟Azure等。用戶可以使用 Task Interface Customization 工具來處理上傳的csv檔案。

Task Interface Customization (Image credit: Scale AI)

Task Interface Customization (Image credit: Scale AI)

根據不同種類的資料屬性,Scale提供多種使用案例。比如文字屬性的資料,使用案例包括內容分類(Content Classification)、文字生成(Text Generation)、內容蒐集(Content Collection)等;圖片屬性的資料使用案例包括物件偵測(Object Detection)、語意分割(Semantic Segmentation)、實體抽取(Entity Extraction)等。

Content Classification & Collection (Image credit: Scale AI)Entity Extraction (Image credit: Scale AI)

Scale提供用戶視覺化編譯器和JSON編譯器處理分類標準法則並提供高度客製化的選項,比如針對標籤盒的大小、長寬設置上下限等。

Taxonomy (Image credit: Scale AI)

Taxonomy (Image credit: Scale AI)

Taxonomy (Image credit: Scale AI)

Taxonomy (Image credit: Scale AI)


Scale Studio

如果用戶擁有標註團隊欲自行標註資料,用戶可以在Scale Studio管理專案。在此平台中,團隊能在此協作,所有活動日誌都會被記錄下來,管理層也能在此評估比較團隊的績效。

Scale Studio (Image credit: Scale AI)

Scale Studio (Image credit: Scale AI)


Activity Log (Image credit: Scale AI)

Activity Log (Image credit: Scale AI)

在Scale Studio中,用戶能使用Scale開發的工具比如自動標註工具(Auto-Annotate Tool),這工具類似Photoshop幫助用戶找到圖片裡物品的邊界並協助將其標註。

Auto-Annotate Tool (Image credit: Scale AI)

Auto-Annotate Tool (Image credit: Scale AI)


Scale Studio中的標註專案也可以整合至Scale Rapid,讓Scale接手標註工作。

Studio -> Rapid (Image credit: Scale AI)

Studio -> Rapid (Image credit: Scale AI)



越寫覺得Scale AI是一個相當完整的生態系,網站裡也有很多寶藏。下一篇我們會來繼續討論Scale AI的產品如Scale InstantML、Scale Map、Scale Spellbook。

Thank you!



留言
avatar-img
留言分享你的想法!
avatar-img
Informula 生產力工坊
8會員
23內容數
Informula 致力於提升工作生產力,分享生產力工具使用情境、簡單的程式、資料處理、數據分析、網路爬蟲應用等。 尋求長期的自我成長要求或職場臨時急救包的朋友歡迎一起交流。
2024/07/30
ARK於6/12發布其對Tesla未來價值的更新,ARK預計在2029年特斯拉每股價值將達到2600美元。
Thumbnail
2024/07/30
ARK於6/12發布其對Tesla未來價值的更新,ARK預計在2029年特斯拉每股價值將達到2600美元。
Thumbnail
2023/10/12
The sophisticated platform for text annotation. Human-powered audio transcription and categorization to power home agents and other voice-controlled
Thumbnail
2023/10/12
The sophisticated platform for text annotation. Human-powered audio transcription and categorization to power home agents and other voice-controlled
Thumbnail
2023/10/10
The flexible solution to develop and scale your own custom maps. Build machine learning models from zero to production in hours, without ML expertise
Thumbnail
2023/10/10
The flexible solution to develop and scale your own custom maps. Build machine learning models from zero to production in hours, without ML expertise
Thumbnail
看更多
你可能也想看
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
透過蝦皮分潤計畫,輕鬆賺取零用金!本文分享5-6月實測心得,包含數據流程、實際收入、平臺優點及注意事項,並推薦高分潤商品,教你如何運用空閒時間創造被動收入。
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
單身的人有些會養寵物,而我養植物。畢竟寵物離世會傷心,植物沒養好再接再厲就好了~(笑)
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
不知你有沒有過這種經驗?衛生紙只剩最後一包、洗衣精倒不出來,或電池突然沒電。這次一次補貨,從電池、衛生紙到洗衣精,還順便分享使用心得。更棒的是,搭配蝦皮分潤計畫,愛用品不僅自己用得安心,分享給朋友還能賺回饋。立即使用推薦碼 X5Q344E,輕鬆上手,隨時隨地賺取分潤!
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
身為一個典型的社畜,上班時間被會議、進度、KPI 塞得滿滿,下班後只想要找一個能夠安靜喘口氣的小角落。對我來說,畫畫就是那個屬於自己的小樹洞。無論是胡亂塗鴉,還是慢慢描繪喜歡的插畫人物,那個專注在筆觸和色彩的過程,就像在幫心靈按摩一樣,讓緊繃的神經慢慢鬆開。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 74 中提到,我們想要建立「Transformer 數學」與「ChatGPT 產生的文字」兩者間的關係。 有鑑於此,我們以句子「
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 74 中提到,我們想要建立「Transformer 數學」與「ChatGPT 產生的文字」兩者間的關係。 有鑑於此,我們以句子「
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 32中,展示了OpenAI的API如何使用,儘管 API 可以滿足許多需求,但它們也有其限制,例如,多用途 API 可能在所有任務
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 32中,展示了OpenAI的API如何使用,儘管 API 可以滿足許多需求,但它們也有其限制,例如,多用途 API 可能在所有任務
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 已經在AI說書 - 從0開始 - 12以及AI說書 - 從0開始 - 13中見識到TPU的威力了,現在我們把參數放大到真實大型語言模型的規模,看看運算時間的等級。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News