AI說書 - 從0開始 - 43

更新於 發佈於 閱讀時間約 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點:

  • 它將原始文字轉成小寫
  • 有可能將原始文字再進行切割
  • 通常 Tokenizer 會提供「整數表達」,以供後續的 Embedding 流程使用,示意如下:
圖片出自:Transformers for Natural Language Processing and Computer Vision - Third Edition, Denis Rothman, 2024

圖片出自:Transformers for Natural Language Processing and Computer Vision - Third Edition, Denis Rothman, 2024


至目前為止, Tokenizer 僅提供 Tokenized Text ,還無法提供太多有用資訊,因此還需要做 Embedding ,此方法有很多,以下舉例 Word2Vec 的 Skip-Gram 說明:

  • 2013年由 Google 提出
  • 假設我關注 2-Step Window 方式,則當我在 word(i) 時, Skip-Gram 模型會分析 word(i-2) 、 word(i-1) 、 word(i+1) 、 word(i+2),因此假設我的句子是:「The quick brown fox jumps over the lazy dog」,那麼我可以產生的 Training Samples 就是:(the, quick)、(the, brown)、(quick, the)、(quick, brown)、(quick, fox)等等
  • 有了 Training Samples 之後,當使用類神經網路來訓練時,輸入層是一個 One-Hot 編碼表示的 1 x 10000 的向量,輸出層也會是相同維度,當中的 10000 僅是舉例,再引入例如維度為 300 的隱藏層,那麼圖示結果就是:
圖片出自:https://arxiv.org/pdf/1301.3781

圖片出自:https://arxiv.org/pdf/1301.3781

  • 因為 One-Hot 編碼只有一個維度會是 1,其他皆為 0,所以輸出層基本上就是去查是 1 的那個維度,相對應於隱藏層中那個 Row,這就是 Word Vector 的由來
avatar-img
177會員
470內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 當我們從基礎 Prompt 過渡到進階 Prompt 時,我們開始釋放人工智慧的潛在潛力,這個階段被稱為
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 基本層級的 Prompt ,通常稱為 Ad-Hoc Prompting ,構成了 Prompt Engi
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 是塑造我們與人工智慧系統互動方式的關鍵實踐,本質上,它是製定請求或
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼AI說書 - 從0開始 - 39,我們陳述了 Transformer 的全貌,那 Transformer 的 Encoder 部分長怎樣呢,如下所示: 在原始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 當我們從基礎 Prompt 過渡到進階 Prompt 時,我們開始釋放人工智慧的潛在潛力,這個階段被稱為
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 基本層級的 Prompt ,通常稱為 Ad-Hoc Prompting ,構成了 Prompt Engi
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 是塑造我們與人工智慧系統互動方式的關鍵實踐,本質上,它是製定請求或
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼AI說書 - 從0開始 - 39,我們陳述了 Transformer 的全貌,那 Transformer 的 Encoder 部分長怎樣呢,如下所示: 在原始
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
上篇我們簡單的了解了 TTS 想要達到的目標,但是對於訓練資料的處理、網路架構、損失函數、輸出分析等考慮到篇幅尚未解釋清楚,這篇將針對訓練資料處理中的文字部分進行詳細說明,讓我們開始吧。
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
寫作其實不是一件容易的事情,除了要有靈感外,長時間撰寫其實對於手部也是很大的負擔,如果你平日工作又是高強度使用鍵盤更是如此。 這邊我會分享我自己如何使用 AI 來幫助我更輕鬆跟高效的產出,除了輕鬆外,也讓效率大幅的提升。
Thumbnail
ChatGPT最擅長的就是文本處理,用來翻譯字幕應該也是一片蛋糕吧!但實際操作測試,卻發現沒那麼容易,原因是影片翻譯要考量的因素太多包括: ▪️時間戳記對齊 ▪️適合閱讀且中英文對照文句長度 ▪️貼合講者原意語氣風格 ▪️專業術語與專有名詞 還有GPT一次可以處理的資訊量有限,超過
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
Thumbnail
最新的AI趨勢讓人眼花撩亂,不知要如何開始學習?本文介紹了作者對AI的使用和體驗,以及各類AI工具以及推薦的選擇。最後強調了AI是一個很好用的工具,可以幫助人們節省時間並提高效率。鼓勵人們保持好奇心,不停止學習,並提出了對健康生活和開心生活的祝福。
Thumbnail
預計量子AI計算會在2032年左右來到,在這之前,我們還有充足的時間可以逐步去學習量子計算與演算法,讓我們按部就班,持續前進,做輕鬆無負擔的超前學習 !
Thumbnail
上篇我們簡單的了解了 TTS 想要達到的目標,但是對於訓練資料的處理、網路架構、損失函數、輸出分析等考慮到篇幅尚未解釋清楚,這篇將針對訓練資料處理中的文字部分進行詳細說明,讓我們開始吧。
Thumbnail
AI 相關的內容每天都非常多,有聽過很多人因此感覺到焦慮,怕錯過了最新資訊就會趕不上,這篇內容會跟大家詳細的分享我自己的學習方法和經驗,並且會在最後分享一些我的學習資訊來源。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
寫作其實不是一件容易的事情,除了要有靈感外,長時間撰寫其實對於手部也是很大的負擔,如果你平日工作又是高強度使用鍵盤更是如此。 這邊我會分享我自己如何使用 AI 來幫助我更輕鬆跟高效的產出,除了輕鬆外,也讓效率大幅的提升。
Thumbnail
ChatGPT最擅長的就是文本處理,用來翻譯字幕應該也是一片蛋糕吧!但實際操作測試,卻發現沒那麼容易,原因是影片翻譯要考量的因素太多包括: ▪️時間戳記對齊 ▪️適合閱讀且中英文對照文句長度 ▪️貼合講者原意語氣風格 ▪️專業術語與專有名詞 還有GPT一次可以處理的資訊量有限,超過