付費限定

使用R語言跑多層次模型:加入層次2預測變項

更新於 發佈於 閱讀時間約 15 分鐘

在進行多層次線性模型(MLM)當中,有時候我們不只會加入層次1的預測變項。我們也會想加入層次2預測變項。本文將介紹加入層次2預測變項的各種模型,並解釋其公式和R語言操作方法。因為內容比較多,所以篇幅比較長。


以行動支持創作者!付費即可解鎖
本篇內容共 6150 字、0 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
教育心理博士的筆記本
254會員
145內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
2025/04/15
Random Coefficients Model一種包含隨機截距和隨機斜率的多層線性模型 。它用於建模具有層次結構的數據。本文將介紹該模型之公式、R語言分析、視覺化。
Thumbnail
2025/04/15
Random Coefficients Model一種包含隨機截距和隨機斜率的多層線性模型 。它用於建模具有層次結構的數據。本文將介紹該模型之公式、R語言分析、視覺化。
Thumbnail
2025/03/28
多層次模型中的 Random intercepts model with level-1 predictor 是層級 1 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析。最後介紹ML和REML估計法選擇。
Thumbnail
2025/03/28
多層次模型中的 Random intercepts model with level-1 predictor 是層級 1 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析。最後介紹ML和REML估計法選擇。
Thumbnail
2025/03/14
多層次模型中的 Random intercepts model with level-2 predictor 是一種層級 2 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析並視覺化。
Thumbnail
2025/03/14
多層次模型中的 Random intercepts model with level-2 predictor 是一種層級 2 預測變量預測層級 1 結果變量的模型。本文將介紹該模型的一般方程式,並實際用R語言進行分析並視覺化。
Thumbnail
看更多
你可能也想看
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
高中數學主題練習—兩向量夾角
Thumbnail
高中數學主題練習—兩向量夾角
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
在進行多層次線性模型(MLM)當中,有時候我們不只會加入層次1的預測變項。我們也會想加入層次2預測變項。本文將介紹加入層次2預測變項的各種模型,並解釋其公式和R語言操作方法。因為內容比較多,所以篇幅比較長。 多層次線性模型(MLM),截距是表示所有學校的平均值。斜率是指模型中自變量的係數,表
Thumbnail
在進行多層次線性模型(MLM)當中,有時候我們不只會加入層次1的預測變項。我們也會想加入層次2預測變項。本文將介紹加入層次2預測變項的各種模型,並解釋其公式和R語言操作方法。因為內容比較多,所以篇幅比較長。 多層次線性模型(MLM),截距是表示所有學校的平均值。斜率是指模型中自變量的係數,表
Thumbnail
高中數學主題練習—兩點斜率
Thumbnail
高中數學主題練習—兩點斜率
Thumbnail
高中數學主題練習—兩點斜率
Thumbnail
高中數學主題練習—兩點斜率
Thumbnail
高中數學主題練習—兩向量夾角
Thumbnail
高中數學主題練習—兩向量夾角
Thumbnail
高中數學主題練習—平面向量內積計算
Thumbnail
高中數學主題練習—平面向量內積計算
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕在Extension 3:Multiple indicators定義。本文為實作部分,將說明Multiple indicators的依序四個步驟的Mplus語法。 ,
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕在Extension 3:Multiple indicators定義。本文為實作部分,將說明Multiple indicators的依序四個步驟的Mplus語法。 ,
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕模式加入為預測或結果變量。而在Extension 2中,可以使用的分類變量進行Multiple group分析。這種方法常用在探討調節效果是否成立,本文將簡介其意義和語法。
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕模式加入為預測或結果變量。而在Extension 2中,可以使用的分類變量進行Multiple group分析。這種方法常用在探討調節效果是否成立,本文將簡介其意義和語法。
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News