資料科學工作的觀點:工藝與機械合作

閱讀時間約 4 分鐘

在2023年的《加州管理評論》(California Management Review)上,德國班貝格大學(University of Bamberg)的資深研究員康斯坦丁·霍普夫博士等人發表了一篇題為〈人工智慧的組織導入:工藝與機械工作〉(Organizational Implementation of AI: Craft and Mechanical Work)的文章。在這篇文章中,霍普夫博士開頭以一個有趣的場景引出話題。

請大家想像一家公司正在開發一項尖端AI應用的場景。在這幅畫面中,我們可能會想像出一個充滿創造性,同時又具有高效率的工作環境。這裡有一群積極主動、訓練有素的資料科學家,他們設計、開發,並實現AI應用程序流程自動化。他們使用標準化軟體進行機器學習,依賴大量高品質資料,並遵從結構化的工作執行方式。在這個場景中,AI應用程式會在短期內持續發布和升級。

然而,這樣的場景距離大多數公司現實的狀況相去甚遠。在實際執行的過程中,AI應用程式的開發更像是一種不斷學習的工藝過程,而非結構化或可預測的機械工作。就像藝術家在創作過程中不斷嘗試與修正,資料科學家們也需要通過實踐和學習,不斷地改進他們的作品。這種工藝性的開發過程,使得AI應用程式更具靈活性和創造力,能夠適應不斷變化的需求和挑戰。

該文章深入分析了55個組織中AI導入的研究,研究結果發現,管理階層通常傾向將AI專案視為機械工作的實施(即擁有可規劃、結構化等特性),這種觀點與資料科學家的工藝觀點形成強烈的對比。霍普夫博士簡單說明以下兩種觀點的不同:

1.工藝觀點(Craftwork Perspective)

工藝依賴於精湛且難以取得的技能,並體現出對美學的理解。工匠對工作具有深厚的個人承諾、願意嘗試、即興創作並持續學習。他們建立自身的職業身份,並與行業內的同行建立聯繫。

2.機械工作觀點(Mechanical Work Perspective)

機械工作具有計劃性,是受控、高結構化和可預測的形式。機械工作的技能容易取得,工作範圍狹窄且特定,並支持極端的分工。在態度上,這種觀點傾向於功利主義,對工作場域的互動秉持交易性態度,較缺乏職業認同。這種工作透過精心計劃活動,建立既定結構並減少不確定性。

圖1 工藝觀點 vs 機械工作觀點

圖1 工藝觀點 vs 機械工作觀點

雖然AI應用程式本身擁有機械工作的特性,但其構建過程更具有工藝特徵。霍普夫博士指出,資料科學家不僅是分析師,還是溝通者和可信賴的顧問。他們對工作有著高度的奉獻精神,深入研究數據,並與企業的其他部門建立緊密聯繫。社群參與對他們來說非常重要。

值得一提的是,機械工作觀點並非毫無價值。一些演算法的自動化開發工具,例如AutoML,促使資料科學技能更具可利用性。自動化減少了資料科學家在資料準備和模型部署方面的時間與專業技能需求,使他們能更專注於數據分析的其他關鍵層面。

最後,該研究結果有助於減少高階主管在管理資料科學家時所產生的迷思,以結合兩種觀點,實現AI在組織中的最大價值。

羅凱揚(台科大兼任助理教授)、黃揚博(政大企管碩士、識商創辦人)

Hopf, K., Müller, O., Shollo, A., & Thiess, T. (2023). Organizational Implementation of AI: Craft and Mechanical Work. California Management Review, 66(1), 23–47. https://doi-org.ezproxy.lib.ntust.edu.tw/10.1177/00081256231197445

✨ 歡迎追蹤,獲取更多相關資訊

► 識商IG:
https://www.instagram.com/bizsense2023/

► Line交流社群:
https://line.me/ti/g2/a2QRj--XfM3FRZBOZpB4rdJGravtdpVOeSLBpQ?utm_source=invitation&utm_medium=link_copy&utm_campaign=default

✨ 最新活動:AI商業策略讀書會

raw-image

詳細活動頁面 👉 https://bizsense-read.com/ai%E8%BD%89%E5%9E%8B/

17會員
72內容數
AI轉型策略、AI商業思維,帶你從宏觀的角度看AI
留言0
查看全部
發表第一個留言支持創作者!
識商的沙龍 的其他內容
根據瑞典斯德哥爾摩經濟學院愛立信研究中心的研究,即便是經驗豐富的公司,也在AI領域面臨著複雜挑戰。克服這些挑戰的關鍵就在於「人才」。 以汽車供應商在自駕車AI初期階段為例,他們需要不斷地優化演算法,同時面臨著資料整合和跨部門協作等新挑戰。隨著技術的演進,管理變得更加複雜,這時就需要優秀的技術人才和
勤業眾信(Deloitte)在2022年底最新發布的人工智慧(AI)研究中指出,雖然AI具有誘人的潛力,但有一半的企業在導入AI方面遇到了困難,表現不如預期。這表明,儘管企業看中AI的應用前景,但實際將AI專案成功應用在業務中仍然具有挑戰性。 導入AI通常需要經歷五個關鍵步驟:選擇、開發、評估、採
ChatGPT僅推出不到兩個月,用戶數已突破1億,突顯科技飛速進步。特別是人工智慧(AI)的發展,使得員工面臨持續學習新技能的壓力。 加州大學聖巴巴拉分校的保羅·萊昂納迪教授與十家在AI領域卓越表現的企業攜手合作三年,共同研發出一套名為「STEP」的策略框架:劃分工作(Segmentation)、
在企業導入人工智慧(AI)的過程中,通常會從小規模開始,逐漸擴大至整體組織,最終擴展至組織外部。不同階段會面臨不同的挑戰。 首先,在小規模階段,管理者需要解決在部門內成功推動AI計劃的問題。當AI擴展至整個組織時,管理者必須應對內部複雜性,這種複雜性因策略、組織規模和AI實施計劃而異。 當整體組
根據瑞典斯德哥爾摩經濟學院和愛立信研究中心的研究發現,企業在導入人工智慧(AI)時,會面對技術、組織和文化三方面的挑戰,該研究並就這三項挑戰提出建議。 1.技術層面 企業在導入AI時,面對技術挑戰,需要提升AI工具的使用品質。如何選擇適當的AI工具、提高AI工具的可用性、改善資料存取方式、優化演
儘管人工智慧(AI)的前景看似無限寬廣,但許多企業在導入AI專案時屢次失敗。例如,IBM縮減了Watson技術項目,亞馬遜也擱置了AI招募工具,這表明導入AI絕非易事。 雖然企業積極希望導入AI,但除了一些科技巨頭的成功案例外,多數人對一般企業在導入AI時的實際狀況知之甚少。因此能借鏡的地方有限。
根據瑞典斯德哥爾摩經濟學院愛立信研究中心的研究,即便是經驗豐富的公司,也在AI領域面臨著複雜挑戰。克服這些挑戰的關鍵就在於「人才」。 以汽車供應商在自駕車AI初期階段為例,他們需要不斷地優化演算法,同時面臨著資料整合和跨部門協作等新挑戰。隨著技術的演進,管理變得更加複雜,這時就需要優秀的技術人才和
勤業眾信(Deloitte)在2022年底最新發布的人工智慧(AI)研究中指出,雖然AI具有誘人的潛力,但有一半的企業在導入AI方面遇到了困難,表現不如預期。這表明,儘管企業看中AI的應用前景,但實際將AI專案成功應用在業務中仍然具有挑戰性。 導入AI通常需要經歷五個關鍵步驟:選擇、開發、評估、採
ChatGPT僅推出不到兩個月,用戶數已突破1億,突顯科技飛速進步。特別是人工智慧(AI)的發展,使得員工面臨持續學習新技能的壓力。 加州大學聖巴巴拉分校的保羅·萊昂納迪教授與十家在AI領域卓越表現的企業攜手合作三年,共同研發出一套名為「STEP」的策略框架:劃分工作(Segmentation)、
在企業導入人工智慧(AI)的過程中,通常會從小規模開始,逐漸擴大至整體組織,最終擴展至組織外部。不同階段會面臨不同的挑戰。 首先,在小規模階段,管理者需要解決在部門內成功推動AI計劃的問題。當AI擴展至整個組織時,管理者必須應對內部複雜性,這種複雜性因策略、組織規模和AI實施計劃而異。 當整體組
根據瑞典斯德哥爾摩經濟學院和愛立信研究中心的研究發現,企業在導入人工智慧(AI)時,會面對技術、組織和文化三方面的挑戰,該研究並就這三項挑戰提出建議。 1.技術層面 企業在導入AI時,面對技術挑戰,需要提升AI工具的使用品質。如何選擇適當的AI工具、提高AI工具的可用性、改善資料存取方式、優化演
儘管人工智慧(AI)的前景看似無限寬廣,但許多企業在導入AI專案時屢次失敗。例如,IBM縮減了Watson技術項目,亞馬遜也擱置了AI招募工具,這表明導入AI絕非易事。 雖然企業積極希望導入AI,但除了一些科技巨頭的成功案例外,多數人對一般企業在導入AI時的實際狀況知之甚少。因此能借鏡的地方有限。
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
在這個科技迅速發展的時代,生成式AI的興起無疑是人工智慧領域中的一大亮點。它不僅改變了我們對於機器智能的認知,也在日常生活中帶來了許多便利。隨著技術的進步,越來越多的人開始接觸到這種新興技術,並感受到它所帶來的變化。
本文探討了臺北股市在2020年崩盤後的市場動態,分析過去數十年的重大黑天鵝事件及其對股市的影響。透過Nick Maggiulli的觀點,強調在股市長期上揚的趨勢中,持續投資的重要性,指出即便在不確定的時刻,未來的收益依然可觀。讀者能從中獲取投資策略與心態的啟發。
Thumbnail
文章主攻四大領域:機率與統計、計量經濟和量化金融分析。以機率統計為核心主幹,詳加說明其精神與應用。也會輔以其餘三個領域的介紹作為統計實例。統計學是AI / 機器學習背後的英雄,假設檢定與統計分布是其兩大特色,前者找出彼此相互關聯的變數;後者則幫助我們進行模擬和抽樣,幫助我們找尋最優解或近似真實值。
Thumbnail
紅色良品(等級0)- 資訊源索引 功能:將書籍和課程轉化為Obsidian中可索引的筆記。這種做法可以幫助你更快地從大量文本中找到需要的資訊。 藍色良品(等級1)- 資訊塊 功能:將書籍或課程中的具體內容段落轉化為Obsidian中可索引的筆記。這樣做可以讓你對特定知識點有更深
Thumbnail
在2023年的《加州管理評論》(California Management Review)上,德國班貝格大學(University of Bamberg)的資深研究員康斯坦丁·霍普夫博士等人發表了一篇題為〈人工智慧的組織導入:工藝與機械工作〉(Organizational Implementatio
Thumbnail
現代數字化的世界中,資料被視為新的黃金。對於數位遊牧者來說,掌握數據分析技能是開啟成功大門的關鍵。數據科學家就像一位探險家,利用各種工具和技巧,挖掘數據中蘊含的寶藏,為客戶提供有價值的洞察。 數據分析工具:發掘數據的利器 來看看其中一些基礎不過的工具: Microsoft Excel
Thumbnail
倖存者偏差(Survivorship bias)是一種認知偏差,指的是在觀察研究對象時,只關注了「倖存」或「成功」的部分,而忽略了已經「消失」或「失敗」的部分。 這種偏差通常發生在樣本不完整或有遺漏的情況下,而且容易導致對結果做出誤導性的評估或推論。 尤其AI的時代來臨,基石源自於數據,數據相當於燃
Thumbnail
2012 年,Data Scientist (資料科學家) 被《哈佛商業評論》譽為「二十一世紀最性感的職業」後,「 Data Science (資料科學) 」逐漸成為一個時髦術語(Buzzword)。 一、關於資料科學 二、資料科學重要職能
Thumbnail
對於資料科學家和數據分析師來說,雖然他們也寫程式,但他們寫程式的習慣和一般認知的工程師不太相同,甚至有些人對於寫code的背景知識明顯不足。或許你會說,「因為現在很多做數據分析的都不是本科系,理論知識當然不會那麼紮實」,我認同這是個可能的原因,但我也認為這不能當成藉口,一個專業工作者本來就應該補足自
Thumbnail
由於資料科學家與數據分析部門出現的時間還不長,大家的認知仍有差異,或因為每間公司核心價價、管理哲學不同,導致數據團隊可能會以各種型式存在,常見的型式有三種:獨立部門、隸屬IT(Information Technology,資訊部門)或RD(Research & Development,軟體開發)
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
在這個科技迅速發展的時代,生成式AI的興起無疑是人工智慧領域中的一大亮點。它不僅改變了我們對於機器智能的認知,也在日常生活中帶來了許多便利。隨著技術的進步,越來越多的人開始接觸到這種新興技術,並感受到它所帶來的變化。
本文探討了臺北股市在2020年崩盤後的市場動態,分析過去數十年的重大黑天鵝事件及其對股市的影響。透過Nick Maggiulli的觀點,強調在股市長期上揚的趨勢中,持續投資的重要性,指出即便在不確定的時刻,未來的收益依然可觀。讀者能從中獲取投資策略與心態的啟發。
Thumbnail
文章主攻四大領域:機率與統計、計量經濟和量化金融分析。以機率統計為核心主幹,詳加說明其精神與應用。也會輔以其餘三個領域的介紹作為統計實例。統計學是AI / 機器學習背後的英雄,假設檢定與統計分布是其兩大特色,前者找出彼此相互關聯的變數;後者則幫助我們進行模擬和抽樣,幫助我們找尋最優解或近似真實值。
Thumbnail
紅色良品(等級0)- 資訊源索引 功能:將書籍和課程轉化為Obsidian中可索引的筆記。這種做法可以幫助你更快地從大量文本中找到需要的資訊。 藍色良品(等級1)- 資訊塊 功能:將書籍或課程中的具體內容段落轉化為Obsidian中可索引的筆記。這樣做可以讓你對特定知識點有更深
Thumbnail
在2023年的《加州管理評論》(California Management Review)上,德國班貝格大學(University of Bamberg)的資深研究員康斯坦丁·霍普夫博士等人發表了一篇題為〈人工智慧的組織導入:工藝與機械工作〉(Organizational Implementatio
Thumbnail
現代數字化的世界中,資料被視為新的黃金。對於數位遊牧者來說,掌握數據分析技能是開啟成功大門的關鍵。數據科學家就像一位探險家,利用各種工具和技巧,挖掘數據中蘊含的寶藏,為客戶提供有價值的洞察。 數據分析工具:發掘數據的利器 來看看其中一些基礎不過的工具: Microsoft Excel
Thumbnail
倖存者偏差(Survivorship bias)是一種認知偏差,指的是在觀察研究對象時,只關注了「倖存」或「成功」的部分,而忽略了已經「消失」或「失敗」的部分。 這種偏差通常發生在樣本不完整或有遺漏的情況下,而且容易導致對結果做出誤導性的評估或推論。 尤其AI的時代來臨,基石源自於數據,數據相當於燃
Thumbnail
2012 年,Data Scientist (資料科學家) 被《哈佛商業評論》譽為「二十一世紀最性感的職業」後,「 Data Science (資料科學) 」逐漸成為一個時髦術語(Buzzword)。 一、關於資料科學 二、資料科學重要職能
Thumbnail
對於資料科學家和數據分析師來說,雖然他們也寫程式,但他們寫程式的習慣和一般認知的工程師不太相同,甚至有些人對於寫code的背景知識明顯不足。或許你會說,「因為現在很多做數據分析的都不是本科系,理論知識當然不會那麼紮實」,我認同這是個可能的原因,但我也認為這不能當成藉口,一個專業工作者本來就應該補足自
Thumbnail
由於資料科學家與數據分析部門出現的時間還不長,大家的認知仍有差異,或因為每間公司核心價價、管理哲學不同,導致數據團隊可能會以各種型式存在,常見的型式有三種:獨立部門、隸屬IT(Information Technology,資訊部門)或RD(Research & Development,軟體開發)