LLM 串連:利用不同模型的優勢完成更複雜和多樣的任務

更新於 發佈於 閱讀時間約 5 分鐘

前言

在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。

在這篇文章中,將使用 SimpleSequentialChain 方法,其中一個模型的輸出將成為另一個模型的輸入,形成一個連續的對話流程。以下說明如何設置和運用這兩個模型,以及它們是如何互相作用來產生有趣且相關的問答。

Chain的基本概念

LLM 是一種深度學習模型,經過大量的文本訓練,使其擁有從海量的知識中識別、匯總、翻譯、預測等能力。Chain 是一種將多個 LLM 連接在一起,以完成更複雜和多樣的任務的方法。Chain 可以讓您利用不同模型的優勢,並將它們的輸出作為下一個模型的輸入,形成一個有序的工作流程。

例如,您可以使用一個 LLM 來生成一個問題,然後使用另一個 LLM 來回答該問題,或者使用一個 LLM 來翻譯一段文本,然後使用另一個 LLM 來摘要該文本。如果想要串聯多個 LLMChain,您可以使用 SimpleSequentialChain 或 SequentialChain 類別來實現。這些類別可以讓多個 LLMChain 按照順序連接起來,並將前一個 LLMChain 的輸出作為後一個 LLMChain 的輸入。

raw-image


實作

選擇基礎模型

model_id_1 = ModelTypes.FLAN_UL2
model_id_2 = ModelTypes.FLAN_T5_XXL

這次為了要讓兩模型互動,選擇了兩個基礎模型。

定義模型參數

from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods

parameters = {
GenParams.DECODING_METHOD: DecodingMethods.SAMPLE,
GenParams.MAX_NEW_TOKENS: 100,
GenParams.MIN_NEW_TOKENS: 1,
GenParams.TEMPERATURE: 0.5,
GenParams.TOP_K: 50,
GenParams.TOP_P: 1
}

Simple Sequential Chain

「簡易串聯鏈」(SimpleSequentialChain)是一種基礎鏈結構,其中每個階段的輸出自動成為下一階段的輸入。在這個過程中,我們將使用兩個 PromptTemplate 對象:一個用於創造隨機問題,另一個用於回答問題。這樣的設置允許我們將 LLMChain 串連,實現自動問題生成和回答

from langchain import PromptTemplate

prompt_1 = PromptTemplate(
input_variables=["topic"],
template="Generate a random question about {topic}: Question: "
)
prompt_2 = PromptTemplate(
input_variables=["question"],
template="Answer the following question: {question}",
)

實際 inference

from langchain.chains import LLMChain

prompt_to_flan_ul2 = LLMChain(llm=flan_ul2_model.to_langchain(), prompt=prompt_1)
flan_to_t5 = LLMChain(llm=flan_t5_model.to_langchain(), prompt=prompt_2)
from langchain.chains import SimpleSequentialChain 
qa = SimpleSequentialChain(chains=[prompt_to_flan_ul2, flan_to_t5], verbose=True)

產生

raw-image

應用中文版

raw-image

延伸應用在 FAQ 的生成

raw-image


小心得

這次練習 LLM 串連的基本概念和實作方法,並展示了如何使用 Google 的兩款大型語言模型 flan-ul2 和 flan-t5-xxl 生成關於特定主題的隨機問題和回答。通過 LLM 串連,我們可以將多個 LLM 模型按照順序連接起來,形成一個有序的工作流程,並利用不同模型的優勢來完成更複雜和多樣的任務。

在這個過程中,當兩個語言模型被放在一起時,它們可以開始進行對話和討論,這為智能客服或對話機器人等應用中的 AI 創造了更多的價值。希望這篇文章能夠幫助您更好地理解 LLM 串連的概念和應用,並啟發您在自己的項目中使用 LLM 串連來實現更多的創新和價值,感謝看到這裡的你,我們下次見~

留言
avatar-img
留言分享你的想法!
avatar-img
Karen的沙龍
34會員
51內容數
歡迎來到《桃花源記》專欄。這裡不僅是一個文字的集合,更是一個探索、夢想和自我發現的空間。在這個專欄中,我們將一同走進那些隱藏在日常生活中的"桃花源"——那些讓我們心動、讓我們反思、讓我們找到內心平靜的時刻和地方
Karen的沙龍的其他內容
2024/11/13
本文章探討了 RAG(Retrieval-Augmented Generation)技術在智能客服領域的應用及其優勢。RAG 通過結合檢索與生成的特性,能夠顯著提高回答的準確性與靈活性。與傳統智能客服系統及純生成式 AI 相比,RAG 能更有效地理解用戶問題,並生成自然流暢的回應,改善用戶體驗。
Thumbnail
2024/11/13
本文章探討了 RAG(Retrieval-Augmented Generation)技術在智能客服領域的應用及其優勢。RAG 通過結合檢索與生成的特性,能夠顯著提高回答的準確性與靈活性。與傳統智能客服系統及純生成式 AI 相比,RAG 能更有效地理解用戶問題,並生成自然流暢的回應,改善用戶體驗。
Thumbnail
2023/12/18
前言 前幾篇分享了 IBM Watsonx.ai 平台,以及在平台上使用 LLM 完成客戶體驗分析、與LLM串連處理較複雜的問題。在這一篇中,我們想來嘗試使用檢索增強生成(RAG)的技術,RAG 通過整合外部數據來增強基礎模型的回答能力,這不僅能解決模型訓練數據的局限性問題,還可以提供更精準和相關
Thumbnail
2023/12/18
前言 前幾篇分享了 IBM Watsonx.ai 平台,以及在平台上使用 LLM 完成客戶體驗分析、與LLM串連處理較複雜的問題。在這一篇中,我們想來嘗試使用檢索增強生成(RAG)的技術,RAG 通過整合外部數據來增強基礎模型的回答能力,這不僅能解決模型訓練數據的局限性問題,還可以提供更精準和相關
Thumbnail
2023/12/17
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
2023/12/17
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
看更多
你可能也想看
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
最近在上LLM線上課 來分享我所學到的 LangChain LangChian是把ChatGPT API 轉換為物件導向的形式來使用我所學到 LangChain 的五個方法 : Prompt Template / LLMChain / OutputParser / Agent / Conversat
Thumbnail
最近在上LLM線上課 來分享我所學到的 LangChain LangChian是把ChatGPT API 轉換為物件導向的形式來使用我所學到 LangChain 的五個方法 : Prompt Template / LLMChain / OutputParser / Agent / Conversat
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
Thumbnail
前言 在先前的文章中,我們探討了 IBM Watsonx 在客戶滿意度分析中的應用。今天,我們將利用 Google 的兩款大型語言模型(LLM)— flan-ul2 和 flan-t5-xxl,展示它們如何串聯起來生成關於特定主題的隨機問題和回答。 在這篇文章中,將使用 SimpleSequen
Thumbnail
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
前言 在上一篇文章中,分享了第一次使用 IBM Watsonx 的經歷,以及我對 Prompt lab 功能的初步探索。繼續這個話題,本文將探討 Watsonx 平台對 Python SDK 的支持,以及實作幾個 LLM 的應用,這一特性為開發者提供了極大的便利,使得在此平台上進行開發和應用大型語
Thumbnail
Hi, 大家好,我是茶桁。 OpenAI 的大语言模型提供了 Completion 和 Embedding 两个核心接口。 我们可以通过增加提示语(Prompt)历史记录来提高模型的回答准确性和自然性。还可以将 Embedding提前索引好存起来,以此做到让AI根据外部知识来回答问题, 在我们
Thumbnail
Hi, 大家好,我是茶桁。 OpenAI 的大语言模型提供了 Completion 和 Embedding 两个核心接口。 我们可以通过增加提示语(Prompt)历史记录来提高模型的回答准确性和自然性。还可以将 Embedding提前索引好存起来,以此做到让AI根据外部知识来回答问题, 在我们
Thumbnail
最近 AI 開發者間最熱門的話題,無非是 LangChain 這套開源開源框架簡化了開發流程。 Flowise,也是一款開源工具,結合了LangChain 的強大功能,推出了一種無需編碼的解決方案,透過簡單的拖拉功能建立流程,縮短開發時間。
Thumbnail
最近 AI 開發者間最熱門的話題,無非是 LangChain 這套開源開源框架簡化了開發流程。 Flowise,也是一款開源工具,結合了LangChain 的強大功能,推出了一種無需編碼的解決方案,透過簡單的拖拉功能建立流程,縮短開發時間。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News