avatar-img

資料科學家之路

37免費公開

歡迎來到「資料科學家之路」,一個專為資料科學家和資料科學愛好者設計的專欄。在這裡,我們將探討資料科學的各個方面,從基礎的數據分析和機器學習技術,到如何應用這些技術解決實際問題。讓我們一起走上這條充滿挑戰和機會的「資料科學家之路」。

全部內容
免費與付費
最新發佈優先
avatar-avatar
Karen
這篇文章分析了學習英文的動機,根據Instagram抽書活動的留言,利用文字雲技術,歸納出大眾學習英文的主要原因是提升職場競爭力,並拓展國際職場機會。學習英文已不再是選項,而是攸關職涯發展的關鍵,持續提升英文能力將為個人帶來更多職涯選擇。
Thumbnail
avatar-avatar
Karen
這篇文章記錄使用Easy Few-shot框架和CUB鳥類資料集實作Few-Shot Learning模型的過程,包含資料讀取、Dataloader設計、ResNet12模型設定、Few-Shot訓練和測試評估等步驟。
Thumbnail
旅人小萌-avatar-img
2025/02/02
謝謝您的分享❤️
avatar-avatar
Karen
探索Few-Shot Learning如何在數據稀缺的情況下使機器學習模型迅速學習並做出精確預測。本文將介紹Few-Shot Learning的基本原理、核心策略,以及在實際應用。
Thumbnail
avatar-avatar
Karen
本篇文章探討如何利用電影數據集構建基於相似度的推薦系統。文章主要分為四個步驟:資料預覽、資料預處理、計算餘弦相似度及結果推論。透過這一流程,讀者將瞭解如何量化電影間的關聯性及用戶偏好,並如何生成推薦結果。
Thumbnail
avatar-avatar
Karen
在現今的數據驅動世界,推薦系統早已成為許多平台(如電商、串流媒體、社交網路)不可或缺的一部分。然而,傳統的推薦方法如協同過濾(Collaborative Filtering)和基於內容過濾(Content-Based Filtering)各有其局限性,例如無法處理冷啟動問題或缺乏靈活性。最近
Thumbnail
avatar-avatar
Karen
本研究探討如何透過圖形資料庫模型來構建電子商務顧客的360度全景視圖,並使用客戶行為模型圖(CBMG)有效整合和分析客戶數據。研究強調理解顧客的行為模式和需求,並針對三種典型的購物行為類型進行分析,以提升網站設計和用戶體驗。通過Neo4j的應用,提供了可視化客戶行為模式的視角。
Thumbnail
avatar-avatar
Karen
本文章探討了 RAG(Retrieval-Augmented Generation)技術在智能客服領域的應用及其優勢。RAG 通過結合檢索與生成的特性,能夠顯著提高回答的準確性與靈活性。與傳統智能客服系統及純生成式 AI 相比,RAG 能更有效地理解用戶問題,並生成自然流暢的回應,改善用戶體驗。
Thumbnail
avatar-avatar
Karen
我參加了由andyrockdata舉辦的資料治理超入門課程,這堂課程讓我在短時間內快速掌握資料治理的基本概念與實務運作。課程介紹了資料治理的框架、起源及相關解決方案,對於資料分析師與資料工程師而言,提供了有價值的學習資源與實踐建議。
Thumbnail
avatar-avatar
Karen
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
avatar-avatar
Karen
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
avatar-avatar
Karen
本篇文章專注於消息傳遞(message passing)在圖神經網絡(GNN)中的應用,並以簡單的例子解釋了消息傳遞的過程和機制。
Thumbnail
avatar-avatar
Karen
本文主要筆記使用pytorch建立graph的幾個概念與實作。在傳統的神經網路模型中,數據點之間往往是互相連接和影響的,使用GNN,我們不僅處理單獨的數據點或Xb,而是處理一個包含多個數據點和它們之間連結的特徵。GNN的優勢在於其能夠將這些連結關係納入模型中,將關係本身作為特徵進行學習。
Thumbnail
avatar-avatar
Karen
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
avatar-avatar
Karen
本文探討了監督式學習、分群和相似度這幾個推薦系統算法,分別討論了它們的優點、缺點以及適用場景。這些算法在推薦系統中扮演著重要角色,並透過特徵選擇與預處理、相似度度量和鄰居的選擇等關鍵因素進行深入分析。文章最後提出在選擇推薦系統算法時應該考慮的因素,以及未來的研究方向。
Thumbnail
avatar-avatar
Karen
Kafka是一個先進的分佈式流處理平臺,具有高吞吐量、可擴展性、容錯性和低延遲特性,提供瞭解耦、非同步和削峰特點。本文介紹了Kafka的通訊模式、適合的應用場景和未來發展趨勢,旨在幫助使用者更好地理解和應用Kafka。
Thumbnail
avatar-avatar
Karen
avatar-avatar
Karen
本文探討了在使用 pandas 處理資料時應注意的幾個關鍵點,以及如何減少因資料型態問題而產生的錯誤,確保資料的原始意義得以保留。主要包括Pandas 資料處理深入解析,尋找CSV之外的數據儲存方案,以及優化資料處理策略。
Thumbnail
avatar-avatar
Karen
上篇進一步認識基本的圖形架構與三大 Graph 算法,那首先從 shortest path 開始,我們會陸續去理解這些算法,以及可能的應用,如果還沒有看過上一篇的,可以點以下連結~那我們就開始吧! 【圖論Graph】Part1:初探圖形與圖形演算法之應用
Thumbnail
avatar-avatar
Karen
本篇文章深入介紹了圖形的基本概念、組成和應用。從圖形的基本組成,到圖的類型與種類,再到圖形演算法的三大類型,本文將接續圖形領域的深入學習,並分享了對圖形的初步認識和學習方向的小心得。希望對正在學習圖形的人有所幫助。
Thumbnail
0/5Graph
avatar-avatar
Karen
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
Thumbnail