使用 BigQuery ML 中的分類模型預測訪客購買狀況

更新 發佈閱讀 30 分鐘

Overview

BigQuery 是 Google 完全代管、無需維運、低成本的分析數據庫。 使用 BigQuery,您可以查詢大量數據,而無需管理任何基礎架構或需要數據庫管理員。 BigQuery 使用 SQL 並可以利用按用量付費模式。 BigQuery 讓您可以專注於分析數據以找到有意義的見解。

BigQuery Machine Learning(BigQuery ML)是 BigQuery 中的一項功能,數據分析師可以使用SQL語句創建、訓練、評估和預測機器學習模型。

在這次實作將使用一個電子商務(Google 商品商店)數據集,其中包含數百萬條已加載到 BigQuery 的 Google Analytics 記錄。 將使用這些數據來運行一些典型的查詢和模型訓練和預測,以讓企業更了解其客戶的購買習慣的。

Access the public dataset

  1. 在「Explorer pane」面板中,按一下「+ ADD」。
  2. 在「Additional sources」下方,按一下「Star a project by name」。
  3. 輸入「data-to-insights」資料集,然後按一下「Star」。


Explore data

  1. 在所有訪問電商網站的訪客中,有多少比例完成了購買?
/*--
使用 visitors 子查詢計算總訪客數,該數據來自於 data-to-insights.ecommerce.web_analytics 資料集中所有的 fullVisitorId 的計數。
--*/
WITH visitors AS(
SELECT
COUNT(DISTINCT fullVisitorId) AS total_visitors
FROM `data-to-insights.ecommerce.web_analytics`
),

/*--
使用 purchasers 子查詢計算總購買者數,該數據同樣來自於 data-to-insights.ecommerce.web_analytics 資料集,但僅計算有交易(totals.transactions)的 fullVisitorId 的計數。
--*/
purchasers AS(
SELECT
COUNT(DISTINCT fullVisitorId) AS total_purchasers
FROM `data-to-insights.ecommerce.web_analytics`
WHERE totals.transactions IS NOT NULL
)

/*--
主查詢部分選擇顯示總訪客數(total_visitors)、總購買者數(total_purchasers)以及轉換率(conversion_rate)。轉換率的計算方式是總購買者數除以總訪客數。
--*/
SELECT
total_visitors,
total_purchasers,
total_purchasers / total_visitors AS conversion_rate
FROM visitors, purchasers

轉換率:2.69%

raw-image


  1. 銷售前五名的產品是?
SELECT
p.v2ProductName,
p.v2ProductCategory,
SUM(p.productQuantity) AS units_sold,
ROUND(SUM(p.localProductRevenue/1000000),2) AS revenue
FROM `data-to-insights.ecommerce.web_analytics`,
UNNEST(hits) AS h,
UNNEST(h.product) AS p
GROUP BY 1, 2
ORDER BY revenue DESC
LIMIT 5;

/*--
選擇顯示商品名稱(v2ProductName)、商品類別(v2ProductCategory)、已售出的單位數量(units_sold)和總收入(revenue)。
使用 UNNEST 函數展平(flatten)資料結構,將 hits 中的每個元素以及其中的 product 屬性展平,以便提取商品相關的數據。
使用 SUM 函數計算每個商品的已售出的單位數量和總收入。已售出的單位數量來自 productQuantity,而總收入則是使用 localProductRevenue,並且將其轉換為百萬單位(除以 1000000)並四捨五入到兩位小數。
使用 GROUP BY 子句將結果按商品名稱和商品類別進行分組。
使用 ORDER BY 子句將結果按照總收入(revenue)降序排序。
使用 LIMIT 5 限制結果集的大小,只顯示前五個結果。
--*/

raw-image


  1. 有多少訪客在再次訪問(subsequent visits)該網站時進行了購買?
# visitors who bought on a return visit (could have bought on first as well
WITH all_visitor_stats AS (
SELECT
fullvisitorid, # 741,721 unique visitors
IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit
FROM `data-to-insights.ecommerce.web_analytics`
GROUP BY fullvisitorid
)

SELECT
COUNT(DISTINCT fullvisitorid) AS total_visitors,
will_buy_on_return_visit
FROM all_visitor_stats
GROUP BY will_buy_on_return_visit

/*--
使用 all_visitor_stats 子查詢,對每個 fullVisitorId 計算相應的統計信息。
fullvisitorid 表示每個獨特的訪客 ID。
IF 函數用於判斷該訪客是否在返回訪問時購買。條件是該訪客的 totals.transactions 大於 0(表示有購買),並且 totals.newVisits 為空(表示不是新訪問)。
will_buy_on_return_visit 列的值為 1(如果滿足條件)或 0(否則)。
在主查詢中,使用 COUNT(DISTINCT fullvisitorid) 計算總訪客數,並根據 will_buy_on_return_visit 分別計算購買和不購買的訪客數。
使用 GROUP BY will_buy_on_return_visit 將結果按照是否在返回訪問時購買進行分組。
--*/

分析結果表示,可以看到 (11873 / 741721) = 1.6% 的訪客總數會再次返回網站進行購買。(包括在第一次會話已經購買的訪客子集)

raw-image


Select features and create your training dataset

Google Analytics(分析)可擷取有關使用者造訪該本電子商務網站資料集的各種維度和衡量標準。瀏覽BigQuery Export schema文件中的各種維度列表,查找有用的特徵,這些特徵將幫助機器學習模型了解訪問者首次訪問您的網站的數據與他們是否會返回購買之間的關係。

測試這兩個欄位是否適合您的分類模型:

  • totals.bounces(訪客是否立即離開網站)
  • totals.timeOnSite(訪客在我們網站上停留的時間)
SELECT
* EXCEPT(fullVisitorId)
FROM

# features
(SELECT
fullVisitorId,
IFNULL(totals.bounces, 0) AS bounces,
IFNULL(totals.timeOnSite, 0) AS time_on_site
FROM
`data-to-insights.ecommerce.web_analytics`
WHERE
totals.newVisits = 1)
JOIN
(SELECT
fullvisitorid,
IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit
FROM
`data-to-insights.ecommerce.web_analytics`
GROUP BY fullvisitorid)
USING (fullVisitorId)
ORDER BY time_on_site DESC
LIMIT 10;

/*--
在子查詢中,選擇 data-to-insights.ecommerce.web_analytics 資料集中的 totals.newVisits = 1 的訪問數據,同時選擇 totals.bounces(彈跳次數)和 totals.timeOnSite(在站點上花費的時間),並使用 IFNULL 函數處理可能的空值。

在另一個子查詢中,計算每個訪客是否在返回訪問時購買,並使用 COUNTIF 函數進行判斷。將結果以 will_buy_on_return_visit 的形式表示。

在主查詢中,使用 JOIN 子句將這兩個子查詢的結果根據 fullVisitorId 進行合併。
使用 EXCEPT(fullVisitorId) 排除掉原始資料中的 fullVisitorId 列,只顯示其他特徵。
使用 ORDER BY time_on_site DESC 將結果按照在站點上花費的時間降序排序。
使用 LIMIT 10 限制結果集的大小,只顯示前十個結果。
--*/
raw-image





我們可以得知:

  • 輸入特徵(X)是「bounces」和「time_on_site」。標籤(Y)是「will_buy_on_return_visit」。
  • bounces」和「time_on_site在訪客第一次訪問網站後就會知道的
  • will_buy_on_return_visit」不是在第一次訪客訪問後得知的。您是在預測那些返回網站並購買的用戶子集。由於在預測時並不知道未來,無法確信新訪客是否會回來購買。我們將建立機器學習模型根據他們第一次會話的數據來獲取未來購買的機率。

Create a BigQuery dataset to store models

  1. 在左側窗格中的專案名稱旁的「...」圖示,然後按一下「 Create dataset」。
  2. 對於 Dataset ID,輸入「ecommerce」。
  3. 點擊 Create dataset


Select a BigQuery ML model type and specify options

  • 由於您將訪客分為“將來會購買”或“將來不會購買”,因此使用羅吉斯迴歸分析進行分類。
BigQuery ML目前支援的模型
  1. 建立模型
CREATE OR REPLACE MODEL `ecommerce.classification_model`
OPTIONS
(
model_type='logistic_reg',
labels = ['will_buy_on_return_visit']
)
AS

#standardSQL
SELECT
* EXCEPT(fullVisitorId)
FROM

# features
(SELECT
fullVisitorId,
IFNULL(totals.bounces, 0) AS bounces,
IFNULL(totals.timeOnSite, 0) AS time_on_site
FROM
`data-to-insights.ecommerce.web_analytics`
WHERE
totals.newVisits = 1
AND date BETWEEN '20160801' AND '20170430') # train on first 9 months
JOIN
(SELECT
fullvisitorid,
IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit
FROM
`data-to-insights.ecommerce.web_analytics`
GROUP BY fullvisitorid)
USING (fullVisitorId)
;
/*--
使用 CREATE OR REPLACE MODEL 語句創建一個新的模型或替換現有的模型。模型的名稱為 ecommerce.classification_model。
使用 OPTIONS 子句指定模型的選項,包括模型類型為邏輯回歸('logistic_reg')和標籤為 will_buy_on_return_visit。
在 AS 子句之後,使用 SELECT 語句選擇模型的輸入特徵。這裡選擇了 totals.bounces 和 totals.timeOnSite,同時使用 IFNULL 函數處理可能的空值。
這些特徵是基於 data-to-insights.ecommerce.web_analytics 資料集中 totals.newVisits = 1 以及日期範圍為 '20160801' 到 '20170430'(前9個月)的數據。
使用 JOIN 子句將這些特徵和目標變數 will_buy_on_return_visit 進行合併。目標變數的值是根據每個訪客是否在返回訪問時購買的統計信息而得到的。
--*/



  1. 查看資料集並確認出現了classification_model
raw-image





Evaluate classification model performance

raw-image
raw-image


  1. 對於 ML 中的分類問題,您希望最小化False Positive(預測用戶返回購買,但他們沒有)並最大化True Positive(預測用戶返回購買,且他們確實這樣做)。
  2. 這種關係透過 ROC (Receiver Operating Characteristic) 曲線進行視覺化,如下所示,嘗試最大化曲線下面積
  • 在 BigQuery ML 中,roc_auc只是評估經過訓練的 ML 模型時的可查詢欄位。








    • 執行下方查詢評估模型的效能 ML.EVALUATE
SELECT
roc_auc,
CASE
WHEN roc_auc > .9 THEN 'good'
WHEN roc_auc > .8 THEN 'fair'
WHEN roc_auc > .7 THEN 'decent'
WHEN roc_auc > .6 THEN 'not great'
ELSE 'poor' END AS model_quality
FROM
ML.EVALUATE(MODEL ecommerce.classification_model, (

SELECT
* EXCEPT(fullVisitorId)
FROM

# features
(SELECT
fullVisitorId,
IFNULL(totals.bounces, 0) AS bounces,
IFNULL(totals.timeOnSite, 0) AS time_on_site
FROM
`data-to-insights.ecommerce.web_analytics`
WHERE
totals.newVisits = 1
AND date BETWEEN '20170501' AND '20170630') # eval on 2 months
JOIN
(SELECT
fullvisitorid,
IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit
FROM
`data-to-insights.ecommerce.web_analytics`
GROUP BY fullvisitorid)
USING (fullVisitorId)

));
  • 模型效能的結果
raw-image





Improve model performance with Feature Engineering

  1. 透過特徵工程提升模型效能:資料集中還有更多其他特徵可以幫助模型更好地理解訪客的第一次會話與他們在後續造訪中購買的可能性之間的關係
  2. 新增一些新特徵並建立第二個機器學習模型,名稱為classification_model_2
    • 訪客首次訪問時在結帳流程中花費了多長時間
    • 訪客來自哪裡(流量來源:自然搜尋、推薦網站等..)
    • 設備類別(行動裝置、平板電腦、桌上型電腦)
    • 地理資訊(國家)
CREATE OR REPLACE MODEL `ecommerce.classification_model_2`
OPTIONS
(model_type='logistic_reg', labels = ['will_buy_on_return_visit']) AS

WITH all_visitor_stats AS (
SELECT
fullvisitorid,
IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit
FROM `data-to-insights.ecommerce.web_analytics`
GROUP BY fullvisitorid
)

# add in new features
SELECT * EXCEPT(unique_session_id) FROM (

SELECT
CONCAT(fullvisitorid, CAST(visitId AS STRING)) AS unique_session_id,

# labels
will_buy_on_return_visit,

MAX(CAST(h.eCommerceAction.action_type AS INT64)) AS latest_ecommerce_progress,

# behavior on the site
IFNULL(totals.bounces, 0) AS bounces,
IFNULL(totals.timeOnSite, 0) AS time_on_site,
IFNULL(totals.pageviews, 0) AS pageviews,

# where the visitor came from
trafficSource.source,
trafficSource.medium,
channelGrouping,

# mobile or desktop
device.deviceCategory,

# geographic
IFNULL(geoNetwork.country, "") AS country

FROM `data-to-insights.ecommerce.web_analytics`,
UNNEST(hits) AS h

JOIN all_visitor_stats USING(fullvisitorid)

WHERE 1=1
# only predict for new visits
AND totals.newVisits = 1
AND date BETWEEN '20160801' AND '20170430' # train 9 months

GROUP BY
unique_session_id,
will_buy_on_return_visit,
bounces,
time_on_site,
totals.pageviews,
trafficSource.source,
trafficSource.medium,
channelGrouping,
device.deviceCategory,
country
);
  1. 評估新模型效能的結果
#standardSQL
SELECT
roc_auc,
CASE
WHEN roc_auc > .9 THEN 'good'
WHEN roc_auc > .8 THEN 'fair'
WHEN roc_auc > .7 THEN 'decent'
WHEN roc_auc > .6 THEN 'not great'
ELSE 'poor' END AS model_quality
FROM
ML.EVALUATE(MODEL ecommerce.classification_model_2, (

WITH all_visitor_stats AS (
SELECT
fullvisitorid,
IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit
FROM `data-to-insights.ecommerce.web_analytics`
GROUP BY fullvisitorid
)

# add in new features
SELECT * EXCEPT(unique_session_id) FROM (

SELECT
CONCAT(fullvisitorid, CAST(visitId AS STRING)) AS unique_session_id,

# labels
will_buy_on_return_visit,

MAX(CAST(h.eCommerceAction.action_type AS INT64)) AS latest_ecommerce_progress,

# behavior on the site
IFNULL(totals.bounces, 0) AS bounces,
IFNULL(totals.timeOnSite, 0) AS time_on_site,
totals.pageviews,

# where the visitor came from
trafficSource.source,
trafficSource.medium,
channelGrouping,

# mobile or desktop
device.deviceCategory,

# geographic
IFNULL(geoNetwork.country, "") AS country

FROM `data-to-insights.ecommerce.web_analytics`,
UNNEST(hits) AS h

JOIN all_visitor_stats USING(fullvisitorid)

WHERE 1=1
# only predict for new visits
AND totals.newVisits = 1
AND date BETWEEN '20170501' AND '20170630' # eval 2 months

GROUP BY
unique_session_id,
will_buy_on_return_visit,
bounces,
time_on_site,
totals.pageviews,
trafficSource.source,
trafficSource.medium,
channelGrouping,
device.deviceCategory,
country
)
));
  • 新模型效能的結果
raw-image



Predict which new visitors will come back and purchase

  1. 預測哪些新訪客會回來並進行購買。
SELECT
*
FROM
ml.PREDICT(MODEL `ecommerce.classification_model_2`,
(

WITH all_visitor_stats AS (
SELECT
fullvisitorid,
IF(COUNTIF(totals.transactions > 0 AND totals.newVisits IS NULL) > 0, 1, 0) AS will_buy_on_return_visit
FROM `data-to-insights.ecommerce.web_analytics`
GROUP BY fullvisitorid
)

SELECT
CONCAT(fullvisitorid, '-',CAST(visitId AS STRING)) AS unique_session_id,

# labels
will_buy_on_return_visit,

MAX(CAST(h.eCommerceAction.action_type AS INT64)) AS latest_ecommerce_progress,

# behavior on the site
IFNULL(totals.bounces, 0) AS bounces,
IFNULL(totals.timeOnSite, 0) AS time_on_site,
totals.pageviews,

# where the visitor came from
trafficSource.source,
trafficSource.medium,
channelGrouping,

# mobile or desktop
device.deviceCategory,

# geographic
IFNULL(geoNetwork.country, "") AS country

FROM `data-to-insights.ecommerce.web_analytics`,
UNNEST(hits) AS h

JOIN all_visitor_stats USING(fullvisitorid)

WHERE
# only predict for new visits
totals.newVisits = 1
AND date BETWEEN '20170701' AND '20170801' # test 1 month

GROUP BY
unique_session_id,
will_buy_on_return_visit,
bounces,
time_on_site,
totals.pageviews,
trafficSource.source,
trafficSource.medium,
channelGrouping,
device.deviceCategory,
country
)

)

ORDER BY
predicted_will_buy_on_return_visit DESC;
  • 預測是使用資料集的最後 1 個月(共 12 個月)的資料進行的。
  • 查詢會輸出對 2017 年 7 月的預測。可以看到三個新新增的欄位
    • Predicted_will_buy_on_return_visit:模型是否認為訪客會稍後再購買(1 = 是)
    • Predicted_will_buy_on_return_visit_probs.label:是/否的二元分類器
    • Predicted_will_buy_on_return_visit.probs.prob:模型對其預測的信心度 (1 = 100%)
raw-image


原始資料來源:Predict Visitor Purchases with a Classification Model in BigQuery ML


如果你喜歡這篇文章歡迎幫我按愛心鼓勵一下喔!~閱讀愉快!~

延伸閱讀

其他學習資訊


留言
avatar-img
Marcos的方格子
25會員
52內容數
歡迎來到「Marcos的方格子」!目前在「Marcos談科技」撰寫在職涯上學習到的知識,在「Marcos談書」分享我在日常的閱讀和心得,歡迎您的到來!!
Marcos的方格子的其他內容
2024/12/21
可觀測性(Observability)是現代架構中的核心能力,透過指標、日誌和分散式追蹤三大支柱,幫助開發者深入理解系統狀態並快速定位問題根源。本篇文章回顧 DevOps Taiwan Meetup 的精彩內容,解析可觀測性與監控的差異、建置流程的四大階段,以及實務應用中的工具選擇與導入時機!
Thumbnail
2024/12/21
可觀測性(Observability)是現代架構中的核心能力,透過指標、日誌和分散式追蹤三大支柱,幫助開發者深入理解系統狀態並快速定位問題根源。本篇文章回顧 DevOps Taiwan Meetup 的精彩內容,解析可觀測性與監控的差異、建置流程的四大階段,以及實務應用中的工具選擇與導入時機!
Thumbnail
2024/12/14
本篇文章針對 CKA 認證考試中常見的實作題目,提供詳細解題流程與指令範例。內容基於 examtopic 題目解析,幫助考生掌握實作技能與應試技巧,快速提升 Kubernetes 操作能力,為通過 CKA 考試做好萬全準備!
Thumbnail
2024/12/14
本篇文章針對 CKA 認證考試中常見的實作題目,提供詳細解題流程與指令範例。內容基於 examtopic 題目解析,幫助考生掌握實作技能與應試技巧,快速提升 Kubernetes 操作能力,為通過 CKA 考試做好萬全準備!
Thumbnail
2024/09/17
如何一年內考取 Google Cloud 所有雲端證照
Thumbnail
2024/09/17
如何一年內考取 Google Cloud 所有雲端證照
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
市場經驗拉長之後,很多投資人都會遇到同一個問題:不是方向看錯,而是部位太集中個股,常常跟大趨勢脫節。 早年的台股環境,中小股非常吃香,反而權值股不動,但QE量化寬鬆後,特別是疫情之後,後疫情時代,鈔票大量在股市走動,這些大資金只能往權值股走,因此早年小P的策略偏向中小型個股,但近年AI興起,高技術
Thumbnail
市場經驗拉長之後,很多投資人都會遇到同一個問題:不是方向看錯,而是部位太集中個股,常常跟大趨勢脫節。 早年的台股環境,中小股非常吃香,反而權值股不動,但QE量化寬鬆後,特別是疫情之後,後疫情時代,鈔票大量在股市走動,這些大資金只能往權值股走,因此早年小P的策略偏向中小型個股,但近年AI興起,高技術
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
BigQuery M是 BigQuery 中的一項功能,數據分析師可以使用SQL語句創建、訓練、評估和預測機器學習模型。 在這次實作將使用一個電子商務(Google 商品商店)數據集來運行一些典型的查詢和模型訓練和預測,以讓企業更了解其客戶的購買習慣。
Thumbnail
BigQuery M是 BigQuery 中的一項功能,數據分析師可以使用SQL語句創建、訓練、評估和預測機器學習模型。 在這次實作將使用一個電子商務(Google 商品商店)數據集來運行一些典型的查詢和模型訓練和預測,以讓企業更了解其客戶的購買習慣。
Thumbnail
題目敘述 題目會給我們一張Products資料表。裡面分別有product_id、new_price、change_date等欄位。其中(product_id, change_date)是這張資料表的複合主鍵Primary key。 所有商品預設都是10元。之後若有更新,則以新價格為主。 要求
Thumbnail
題目敘述 題目會給我們一張Products資料表。裡面分別有product_id、new_price、change_date等欄位。其中(product_id, change_date)是這張資料表的複合主鍵Primary key。 所有商品預設都是10元。之後若有更新,則以新價格為主。 要求
Thumbnail
題目會給我們兩張資料表。 第一張是Customer資料表,裡面分別有customer_id 、product_key 等欄位。其中product_key 是這張資料表的外鍵foreign key,關連到第二張Product資料表。 題目還特別提醒,這張資料表可能包含重複的data row
Thumbnail
題目會給我們兩張資料表。 第一張是Customer資料表,裡面分別有customer_id 、product_key 等欄位。其中product_key 是這張資料表的外鍵foreign key,關連到第二張Product資料表。 題目還特別提醒,這張資料表可能包含重複的data row
Thumbnail
題目敘述 題目會給我們兩張資料表,第一張是Sales,第二張是Product。 第一張是Sales表格,裡面分別有sale_id、 product_id、year、quantity、price等欄位。其中(sale_id、 product_id)做為複合主鍵Primary key
Thumbnail
題目敘述 題目會給我們兩張資料表,第一張是Sales,第二張是Product。 第一張是Sales表格,裡面分別有sale_id、 product_id、year、quantity、price等欄位。其中(sale_id、 product_id)做為複合主鍵Primary key
Thumbnail
你是否曾經在工作中遇到需要快速查找各區域業務人員銷售數量的情況?Excel的LOOKUP函數就是你解決這個問題的最佳利器!在這篇文章中,我們將深入探討LOOKUP函數的應用,並教你如何輕鬆應對各區域業務人員的銷售數據,提高工作效率。
Thumbnail
你是否曾經在工作中遇到需要快速查找各區域業務人員銷售數量的情況?Excel的LOOKUP函數就是你解決這個問題的最佳利器!在這篇文章中,我們將深入探討LOOKUP函數的應用,並教你如何輕鬆應對各區域業務人員的銷售數據,提高工作效率。
Thumbnail
Shopify 需要串接 GA4 以提升數據分析和監控,GA4提供使用者中心的數據、機器學習、Google Ads整合,且免費使用,雖有一些操作複雜性和數據保存期限限制,但 TenMax GA4 導入方案團隊可克服這些挑戰,為 Shopify 商家提供更完整的競爭優勢和數據洞察!
Thumbnail
Shopify 需要串接 GA4 以提升數據分析和監控,GA4提供使用者中心的數據、機器學習、Google Ads整合,且免費使用,雖有一些操作複雜性和數據保存期限限制,但 TenMax GA4 導入方案團隊可克服這些挑戰,為 Shopify 商家提供更完整的競爭優勢和數據洞察!
Thumbnail
2021智慧消費關鍵報告重點摘要及SEO建議,探討臺灣網路購物市場趨勢、OMO消費模式及數位轉型策略。
Thumbnail
2021智慧消費關鍵報告重點摘要及SEO建議,探討臺灣網路購物市場趨勢、OMO消費模式及數位轉型策略。
Thumbnail
拜讀 Happy Lee 的文章 「NAPL模型 - 零售業數據教我們的人生哲理」之後,對於 91APP 之所以能持續穩坐台灣開店平台的龍頭地位,深深的感到敬佩,尤其是扎扎實實為滿足商家需求,或為商家提供實質幫助而開發的各種軟體服務,包括這篇文章要討論的主角 - NAPL模型。
Thumbnail
拜讀 Happy Lee 的文章 「NAPL模型 - 零售業數據教我們的人生哲理」之後,對於 91APP 之所以能持續穩坐台灣開店平台的龍頭地位,深深的感到敬佩,尤其是扎扎實實為滿足商家需求,或為商家提供實質幫助而開發的各種軟體服務,包括這篇文章要討論的主角 - NAPL模型。
Thumbnail
在快消公司的電商部門工作,多了許多第一線觀察上海電商玩法的實作,整理成一篇筆記,希望能幫助到有需要的人,也歡迎各路大神一起交流   在電商做行銷,有三部曲:
Thumbnail
在快消公司的電商部門工作,多了許多第一線觀察上海電商玩法的實作,整理成一篇筆記,希望能幫助到有需要的人,也歡迎各路大神一起交流   在電商做行銷,有三部曲:
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News