[OpenCV基礎][Python]邊緣偵測Sobel、Scharr、Laplacian、 Canny

更新於 發佈於 閱讀時間約 5 分鐘

OpenCV 提供了多種用於邊緣偵測的方法,其中一些常見的包括 Sobel、Scharr、Laplacian,還有 Canny 邊緣檢測器。這些方法可以幫助我們檢測圖像中的暗明強度變化,從而找到物體的邊緣

以下方法,都需輸入灰階圖片。


邊緣偵測方法:

Sobel 運算子:

Sobel 運算子用於計算圖像的梯度,尤其是水平方向和垂直方向的梯度。在這個例子中,分別計算了 x 方向 y 方向Sobel 梯度

Sobel 運算子使用 3x3 的核,其中水平和垂直方向的權重分佈如下:

Sobel_X:
[ -1 0 1 ]
[ -2 0 2 ]
[ -1 0 1 ]

Sobel_Y:
[ 1 2 1 ]
[ 0 0 0 ]
[ -1 -2 -1 ]

語法

# Sobel 運算子
sobel_x = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3): 計算 x 方向的 Sobel 梯度。
cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3): 計算 y 方向的 Sobel 梯度。
ksize 參數指定了 Sobel 核的大小,這裡是 3x3 的核。
cv2.CV_64F 確保了輸出梯度的數據類型是 64 位浮點數。

示範圖

sobel

sobel


Scharr 運算子:

Scharr 運算子也用於計算圖像的梯度,和 Sobel 類似,但其核的權重分佈更均勻,能夠提供更平滑的梯度估計。

水平和垂直方向的權重分佈如下:

Scharr_X:
[ -3 0 3 ]
[ -10 0 10 ]
[ -3 0 3 ]

Scharr_Y:
[ 3 10 3 ]
[ 0 0 0 ]
[ -3 -10 -3 ]

語法

# Scharr 運算子
scharr_x = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharr_y = cv2.Scharr(img, cv2.CV_64F, 0, 1)

img: 輸入的灰度圖像。
cv2.CV_64F: 輸出圖像的深度,通常使用 64 位浮點數以確保梯度的準確性。
10: 分別表示計算 x 方向和 y 方向的梯度。

示範圖

Scharr 與 Sobel X軸的比較

Scharr 與 Sobel X軸的比較

Scharr 與 Sobel Y軸的比較

Scharr 與 Sobel Y軸的比較


Laplacian 運算子

Laplacian 運算子用於計算圖像的二次導數,它可以提取圖像中的輪廓和邊緣信息。這是一種常用的邊緣檢測方法。

語法:

laplacian = cv2.Laplacian(img, cv2.CV_64F, ksize=3)

img: 輸入的灰度圖像。
cv2.CV_64F: 輸出圖像的深度,通常使用 64 位浮點數。
ksize 參數指定了 Laplacian 核的大小,這裡是 3x3 的核。

Laplacian 運算子對圖像中的高頻信息進行了增強,強調了邊緣和細節。

Laplacian

Laplacian


Canny 邊緣檢測器

Canny 邊緣檢測是一種綜合了多個步驟的強大方法,包括高斯模糊計算梯度非極大值抑制雙閾值檢測。它可以在圖像中檢測到細緻的邊緣

語法:

edges = cv2.Canny(img, threshold1, threshold2)

img: 輸入的灰度圖像。
threshold1threshold2: 雙閾值檢測的兩個閾值,用於區分強邊緣、弱邊緣和非邊緣點。

Canny 邊緣檢測在一個連續的操作中完成多個步驟,包括平滑、梯度計算、非極大值抑制和邊緣連接。它能夠產生高質量的邊緣檢測結果,並且可以通過調整閾值進行對結果的細化。

Canny

Canny


邊緣偵測算法的優缺點總結:

Canny 邊緣檢測:

優點:
高準確性: 提供準確的邊緣檢測結果。
低誤報率: 雙閾值檢測可控制強弱邊緣,減少誤報。
平滑效果: 使用高斯平滑有助於去除噪聲

缺點:
複雜度: 實現較複雜,需要調整參數
計算量大: 計算量相對較大。

Sobel 運算子:

優點:
簡單: 實現簡單,易於應用。
適用於清晰圖像: 在清晰圖像中,能有效提取邊緣。

缺點:
對噪聲敏感: 在噪聲多的情況下容易受到干擾。
缺乏方向性: 只提供垂直和水平方向梯度。

Laplacian 運算子:

優點:
提取細節: 能提取圖像中的細節和高頻信息。
無方向性: 不受方向性限制,能檢測多方向邊緣。

缺點:
對噪聲敏感: 容易受到噪聲的干擾。
誤報: 可能產生一些不必要的誤報,特別在有噪聲的圖像中。











留言
avatar-img
留言分享你的想法!
avatar-img
螃蟹_crab的沙龍
150會員
297內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。 興趣是攝影,踏青,探索未知領域。 人生就是不斷的挑戰及自我認清,希望老了躺在床上不會後悔自己什麼都沒做。
螃蟹_crab的沙龍的其他內容
2025/02/15
在電腦視覺應用中,輪廓(Contour)常用來描述物體的邊界。 當圖像中有雜訊或物體邊緣過於複雜時,我們可以利用輪廓逼近技術,將輪廓簡化成較少點數的多邊形,這不僅有助於後續的形狀分析,也能提高處理速度。 本文將介紹如何使用 OpenCV 中的 cv2.arcLength 與 cv2.approx
Thumbnail
2025/02/15
在電腦視覺應用中,輪廓(Contour)常用來描述物體的邊界。 當圖像中有雜訊或物體邊緣過於複雜時,我們可以利用輪廓逼近技術,將輪廓簡化成較少點數的多邊形,這不僅有助於後續的形狀分析,也能提高處理速度。 本文將介紹如何使用 OpenCV 中的 cv2.arcLength 與 cv2.approx
Thumbnail
2024/12/02
中值濾波器(Adaptive Median Filter)是一種針對噪聲去除的圖像處理技術,主要應用於處理含有椒鹽雜訊的圖像,但在椒鹽雜訊過大時就會面臨,若為了處理掉雜訊,使用的處理窗口(kernel)就要大一點,會造成圖像的邊緣模糊掉。 後面為解決這個問題,就發展了自適應中值濾波器,其概念源自於
Thumbnail
2024/12/02
中值濾波器(Adaptive Median Filter)是一種針對噪聲去除的圖像處理技術,主要應用於處理含有椒鹽雜訊的圖像,但在椒鹽雜訊過大時就會面臨,若為了處理掉雜訊,使用的處理窗口(kernel)就要大一點,會造成圖像的邊緣模糊掉。 後面為解決這個問題,就發展了自適應中值濾波器,其概念源自於
Thumbnail
2024/10/03
在影像處理中,形態學操作是非常重要的一種技術,能夠幫助我們去除噪點、強化特徵、修復物體的形狀等。形態學操作的核心是「結構元素」(kernel),不同形狀的結構元素會產生不同的處理效果。本文將介紹如何使用不同形狀的結構元素來進行圖像處理,並結合實際程式範例和測試圖片來說明其效果。
Thumbnail
2024/10/03
在影像處理中,形態學操作是非常重要的一種技術,能夠幫助我們去除噪點、強化特徵、修復物體的形狀等。形態學操作的核心是「結構元素」(kernel),不同形狀的結構元素會產生不同的處理效果。本文將介紹如何使用不同形狀的結構元素來進行圖像處理,並結合實際程式範例和測試圖片來說明其效果。
Thumbnail
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
直方圖是對圖像中像素強度分布的圖形表示。通過分析直方圖,我們可以獲得有關圖像對比度、亮度和色彩分佈的有用信息。
Thumbnail
直方圖是對圖像中像素強度分布的圖形表示。通過分析直方圖,我們可以獲得有關圖像對比度、亮度和色彩分佈的有用信息。
Thumbnail
廢話不多說,先上成果圖。 成果圖 主要實現方法 1.灰階後利用cv2.Canny找物體的邊緣 2.找物件相對應的直線cv2.HoughLines 3.分類為橫向和垂直的直線角度,求得相對於物件的旋轉角度 4.根據算出的相對應旋轉角度將物件轉正
Thumbnail
廢話不多說,先上成果圖。 成果圖 主要實現方法 1.灰階後利用cv2.Canny找物體的邊緣 2.找物件相對應的直線cv2.HoughLines 3.分類為橫向和垂直的直線角度,求得相對於物件的旋轉角度 4.根據算出的相對應旋轉角度將物件轉正
Thumbnail
OpenCV(Open Source Computer Vision Library)是一個開源的計算機視覺和影像處理庫,它提供了豐富的功能和工具,可用於開發各種視覺應用程式。 OpenCV最初是用C++編寫的,但它也提供了Python、Java等多種程式語言的接口,方便不同語言的開發者使用。
Thumbnail
OpenCV(Open Source Computer Vision Library)是一個開源的計算機視覺和影像處理庫,它提供了豐富的功能和工具,可用於開發各種視覺應用程式。 OpenCV最初是用C++編寫的,但它也提供了Python、Java等多種程式語言的接口,方便不同語言的開發者使用。
Thumbnail
本文介紹OpenCV中的SimpleBlobDetector用於檢測斑點或圓,以及其與霍夫轉換找圓方法的差異。透過程式範例和解析,講解檢測到的關鍵點和設定參數,並整理SimpleBlobDetector與霍夫轉換的不同。最後,探討不同的應用場景和參數調整。
Thumbnail
本文介紹OpenCV中的SimpleBlobDetector用於檢測斑點或圓,以及其與霍夫轉換找圓方法的差異。透過程式範例和解析,講解檢測到的關鍵點和設定參數,並整理SimpleBlobDetector與霍夫轉換的不同。最後,探討不同的應用場景和參數調整。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
[影像處理_OpenCV Python]使用Python撰寫影像處理功能,圖片遮罩或濾除掉不要的地方,旋轉圖片 以下範例將呈現影像處理三種不同的應用: 遮罩的實現 濾除 旋轉
Thumbnail
[影像處理_OpenCV Python]使用Python撰寫影像處理功能,圖片遮罩或濾除掉不要的地方,旋轉圖片 以下範例將呈現影像處理三種不同的應用: 遮罩的實現 濾除 旋轉
Thumbnail
邊緣與輪廓檢測 edge detection
Thumbnail
邊緣與輪廓檢測 edge detection
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News