[論文導讀]多模態數據與人工智能技術在醫學診斷上的綜效

更新於 發佈於 閱讀時間約 3 分鐘


多模態資料與模型目前在人工智慧領域是主流話題之一。多模態對於醫學研究之所以重要,是因為它能夠提供疾病的全面觀點,從來自不同來源和類型的數據(如醫學影像、文字病歷、臨床數據與生理訊號等)結合起來,使得醫學偵測與診斷更加準確和全面。

透過結合這些不同的數據類型,醫生和研究人員可以獲得關於患者狀況的更深入理解,從而做出更好的治療決策。例如,在診斷阿茲海默病時,結合神經影像學數據、認知測試結果和基因資訊可以提高診斷的準確性。多模態數據的綜合分析對於複雜疾病的生物機轉、改善疾病預測模型以及發展個性化治療方案具有重要意義。


本文中除了對阿茲海默症有一些說明之外,針對乳腺癌、抑郁癥、心臟病和癲癇等疾病的多模態數據應用和人工智能(AI)技術的結合,展示了在醫學診斷中的最新進展。乳腺癌,在乳腺癌診斷中,結合了來自乳腺X光片的影像數據和遺傳資訊,提供了對疾病在結構較全面的了解。憂鬱症,則是結合了文本和語音數據的分析,提高了語言和聲學線索在提高診斷準確性。通過分析患者的語言表達和聲音特徵,AI技術能夠輔助識別抑郁癥的跡象。心臟病,對於心臟病的診斷,研究集中於生理信號和影像數據的綜合分析,這種方法結合了心電圖(ECG)和其他影像學數據,能夠提供關於心臟結構和功能的重要信息,有助於早期診斷和治療心臟病。癲癇,在癲癇的案例研究中,特別強調了腦電圖(EEG)數據的應用,展示了實時監測和數據驅動見解的重要性。EEG數據的分析對於理解癲癇發作的特點和頻率至關重要,AI技術的應用進一步加強了對這些覆雜數據的解析能力,有助於發展更有效的監測和治療策略。


針對這篇文章,我認為有三個問題仍待思考:

第一:最佳的多模態結合策略是什麼?

在處理多種類型的醫學數據時(醫學影像、文字病歷、臨床數據與生理訊號),到底要使用哪種的數據結合策略是一個挑戰。不同類型的數據具有不同的數據特徵,如何設計一個混合型的演算法能夠最大化利用這些數據的互補性,以提高診斷的準確性和效率?


第二:AI技術在處理多模態醫學數據中的可解釋性如何強化

我們都知道 AI技術(特別是深度學習模型)在醫學診斷中表現上相當優異,但它們的“黑盒子”性質使得醫生難以理解與推論決策過程。在多模態數據的情況下,這一挑戰更大。因此,如何讓可解釋AI模型能夠提高其在醫學應用中的可解釋性,從而增強醫生和患者的信任就變成AI科學家的重責大任。


第三:如何處理多模態數據分析中的隱私和倫理問題?

多模態數據分析需要收集和整合來自患者的多種資訊,這中間可能存在一些可能涉及個人隱私的敏感數據(例如:遺傳資訊等)。在利用這些數據進行研究和開發新的診斷工具時,如何確保數據的安全性和患者的隱私權不被侵犯,同時遵守倫理原則?


資料來源:A Comprehensive Review on Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis


M-Insight : AI科技創新 分享有關人工智慧對於產業與企業的實務應用、研究成果、產業情報等資訊,歡迎人工智慧、醫藥生技、科技管理領域的同好、專家學者、醫師、研究人員與業界朋友一同參與交流。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
這份研究分享了使用AI進行醫療研究的流程,介紹了三角纖維軟骨複合體(TFCC)的定位、重要性,以及如何應用MRI和AI協助進行影像判讀進而降低患者痛楚。研究使用兩種卷積神經網絡進行深度學習模型的設計與訓練以預測TFCC損傷的機率。最後得出結論MRNet 框架較能夠檢測TFCC損傷並協助醫師準確診斷。
本篇文章主要介紹一位菲律賓學者對使用大型語言模型產生文章的想法,說明如何利用AI技術進行學術寫作,以及提示工程的重要性。文中介紹了許多在醫學領域的應用以及學術寫作中的多種提示類型。文章還提到了。本文將會給讀者帶來對AI在學術寫作領域的啟發。
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
今天分享長期觀察 AI 議題的 Martin Signoux 對2024年AI技術領域的觀點。他認為「大型語言模型」未來將不具備任何優勢,未來發展是「大型多模態模型」,而且在2024年的議題量將會超越「大型語言模型」,此觀點也受到楊立昆(Yann LeCuu)的認同。
根據美國FDA的數據顯示,2023年的申請量是歷年最大,放射學領域是AI/ML-SaMD的醫材設備申請數持續穩定成長的科別。AI/ML-SaMD的醫材設備通過量預計將成長30%以上。放射科領域佔全部通過量的76%,估計2023年也將保持居冠。
這份研究分享了使用AI進行醫療研究的流程,介紹了三角纖維軟骨複合體(TFCC)的定位、重要性,以及如何應用MRI和AI協助進行影像判讀進而降低患者痛楚。研究使用兩種卷積神經網絡進行深度學習模型的設計與訓練以預測TFCC損傷的機率。最後得出結論MRNet 框架較能夠檢測TFCC損傷並協助醫師準確診斷。
本篇文章主要介紹一位菲律賓學者對使用大型語言模型產生文章的想法,說明如何利用AI技術進行學術寫作,以及提示工程的重要性。文中介紹了許多在醫學領域的應用以及學術寫作中的多種提示類型。文章還提到了。本文將會給讀者帶來對AI在學術寫作領域的啟發。
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
今天分享長期觀察 AI 議題的 Martin Signoux 對2024年AI技術領域的觀點。他認為「大型語言模型」未來將不具備任何優勢,未來發展是「大型多模態模型」,而且在2024年的議題量將會超越「大型語言模型」,此觀點也受到楊立昆(Yann LeCuu)的認同。
根據美國FDA的數據顯示,2023年的申請量是歷年最大,放射學領域是AI/ML-SaMD的醫材設備申請數持續穩定成長的科別。AI/ML-SaMD的醫材設備通過量預計將成長30%以上。放射科領域佔全部通過量的76%,估計2023年也將保持居冠。
本篇參與的主題活動
先前麥克買了在預算及性能方面都十分複合需求的NXTPAPER 11平板,但拿到辦公室使用後便發現因為時不時有簡報需求,主機本身不支援有線視訊輸出實在是非常不方便,因又開始尋找新歡。最終麥克選擇了算是還滿熟悉的品牌小米旗下的小米平板6,以下為麥克這一個月下來的使用心得。
從預計的十月底出貨經過重重波折,Pubu自家開發的10寸彩色閱讀器Pubook Pro終於是送到第一批集資者手中了。究竟這台閱讀器有沒有本事撼動目前的電子紙閱讀器市場?有達到集資時承諾的各項功能嗎?且讓身為首批集資者之一的麥克跟大家談談收到主機後使用數天的感想。
Steam Deck 迎來大改版,最重要的更新就是換成 OLED 螢幕。使用 OLED 螢幕帶來更好看的顏色,大小還小幅提升到 7.4 吋。關係續航力的電池也從 40 瓦小時升級到 50 瓦小時, 3A 大作都可以多玩一小時呢!這麼香的更新,怎麼不給他買下去呢 😄
先前麥克買了在預算及性能方面都十分複合需求的NXTPAPER 11平板,但拿到辦公室使用後便發現因為時不時有簡報需求,主機本身不支援有線視訊輸出實在是非常不方便,因又開始尋找新歡。最終麥克選擇了算是還滿熟悉的品牌小米旗下的小米平板6,以下為麥克這一個月下來的使用心得。
從預計的十月底出貨經過重重波折,Pubu自家開發的10寸彩色閱讀器Pubook Pro終於是送到第一批集資者手中了。究竟這台閱讀器有沒有本事撼動目前的電子紙閱讀器市場?有達到集資時承諾的各項功能嗎?且讓身為首批集資者之一的麥克跟大家談談收到主機後使用數天的感想。
Steam Deck 迎來大改版,最重要的更新就是換成 OLED 螢幕。使用 OLED 螢幕帶來更好看的顏色,大小還小幅提升到 7.4 吋。關係續航力的電池也從 40 瓦小時升級到 50 瓦小時, 3A 大作都可以多玩一小時呢!這麼香的更新,怎麼不給他買下去呢 😄
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
隨著科技的飛速發展,診所雲端醫療系統作為一種創新的解決方案,將會透過自動化數據處理和分析、遠距醫療服務、資料共享和整合等方式提升醫療服務的效率和品質,並且創造一個更高效、永續的醫療環境。此外,它還將提升國民健康水平,促進疾病的早期發現和診斷,提高治療的準確性和有效性,並促進健康管理的普及。
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
人工智慧的浪潮正在席捲全球,而生成式AI更是成為當前最炙手可熱的焦點。透過強大的計算能力和創新的算法,生成式AI可以生成逼真的圖像、文字和語音,為各個領域帶來前所未有的創新和突破。
Thumbnail
醫療保健產業面臨多種挑戰,像流行病、慢性病、心理健康問題和醫療專業人員短缺等,而生成式人工智慧 (Generative AI) 則有機會來解決這些挑戰。 根據摩根士丹利 (Morgan Stanley) 所提供的資訊,認為人工智慧在醫療領域的市場機會,估計高達 6 兆美元,突顯了這項技術的商業價值
Thumbnail
本文章探討了多智能體系統(MAS)在生成式AI領域中的應用,以及GenAI對於AI_MCU和Software defined hardware的影響。文章還總結了SDH設計模式對數據科學和人工智能時代的影響,並提供了有關GenAI的一些額外信息。
Thumbnail
人工智慧(AI)的未來展望 在當今這個科技日新月異的時代,人工智慧(AI)已成為推動創新和進步的重要力量。從自動駕駛汽車到精準醫療,AI的應用範圍不斷擴大,其潛力無限。然而,隨著AI技術的快速發展,我們也必須關注其對社會、經濟和倫理的影響。
Thumbnail
本文介紹了人工智慧的定義和發展,以及在醫療、金融、製造、交通、教育等領域的應用。探討了AI的優勢和挑戰,以及AI在未來社會中的角色。作者提出了對AI發展的個人觀點和建議,強調了謹慎發展AI並制定相關法律法規的重要性。
Thumbnail
依照各機構去研究的醫療產業領域 規劃投資者幾乎都是往精準醫療或數位醫療相關 精準醫療、遠距醫療跟醫療檢測是比較可以合作的,因為這些可以運用到科技業的專業領域 達成1+1大於2的產業商機才是現在很多AI結合生技醫療的重點 近期看到很多科技公司進軍生技的原因就是"多角化經營需求是占比最高
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
隨著科技的飛速發展,診所雲端醫療系統作為一種創新的解決方案,將會透過自動化數據處理和分析、遠距醫療服務、資料共享和整合等方式提升醫療服務的效率和品質,並且創造一個更高效、永續的醫療環境。此外,它還將提升國民健康水平,促進疾病的早期發現和診斷,提高治療的準確性和有效性,並促進健康管理的普及。
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
人工智慧的浪潮正在席捲全球,而生成式AI更是成為當前最炙手可熱的焦點。透過強大的計算能力和創新的算法,生成式AI可以生成逼真的圖像、文字和語音,為各個領域帶來前所未有的創新和突破。
Thumbnail
醫療保健產業面臨多種挑戰,像流行病、慢性病、心理健康問題和醫療專業人員短缺等,而生成式人工智慧 (Generative AI) 則有機會來解決這些挑戰。 根據摩根士丹利 (Morgan Stanley) 所提供的資訊,認為人工智慧在醫療領域的市場機會,估計高達 6 兆美元,突顯了這項技術的商業價值
Thumbnail
本文章探討了多智能體系統(MAS)在生成式AI領域中的應用,以及GenAI對於AI_MCU和Software defined hardware的影響。文章還總結了SDH設計模式對數據科學和人工智能時代的影響,並提供了有關GenAI的一些額外信息。
Thumbnail
人工智慧(AI)的未來展望 在當今這個科技日新月異的時代,人工智慧(AI)已成為推動創新和進步的重要力量。從自動駕駛汽車到精準醫療,AI的應用範圍不斷擴大,其潛力無限。然而,隨著AI技術的快速發展,我們也必須關注其對社會、經濟和倫理的影響。
Thumbnail
本文介紹了人工智慧的定義和發展,以及在醫療、金融、製造、交通、教育等領域的應用。探討了AI的優勢和挑戰,以及AI在未來社會中的角色。作者提出了對AI發展的個人觀點和建議,強調了謹慎發展AI並制定相關法律法規的重要性。
Thumbnail
依照各機構去研究的醫療產業領域 規劃投資者幾乎都是往精準醫療或數位醫療相關 精準醫療、遠距醫療跟醫療檢測是比較可以合作的,因為這些可以運用到科技業的專業領域 達成1+1大於2的產業商機才是現在很多AI結合生技醫療的重點 近期看到很多科技公司進軍生技的原因就是"多角化經營需求是占比最高