人工智慧推斷糖尿病駕駛血糖低,改善行車安全

閱讀時間約 5 分鐘


低血糖是糖尿病患者最危險的急性併發症之一,對駕駛安全構成重大風險。儘管糖尿病治療有了顯著進步,但低血糖仍然是個挑戰,特別是在駕駛汽車時。目前在低血糖的可靠檢測仍未得到滿足,因為現有的感測方法具有診斷延遲、侵入性、低可用性和高成本的限制。

加上現有的血糖自我監測和連續血糖監測方法缺乏主動預警機制,或由於侵入性、可進性、成本和時間延遲而受限。這些限制尤其在「駕駛車輛」時就顯得重要,因為需要迅速採取行動。由於駕駛時未被認識到的低血糖可能導致大量道路事故,因此新的測試血糖方法可以用來檢測低血糖,以避免造成事故。

raw-image



目前現況

在這篇研究中,研究者透過「生物醫學訊號」應用「機器學習(ML)技術」推斷健康狀態的創新方法,特別聚焦於駕駛實際汽車時偵測糖尿病患者低血糖狀態。這項研究填補了當前技術在即時、非侵入式監測駕駛中低血糖風險的重大缺口,為糖尿病患者的駕駛安全提供了全新視角。

低血糖患者面臨的主要挑戰之一,是當高度專注的活動(如「駕駛時」),目前的血糖監測技術仍然存在局限性,例如,血糖自我監測和連續血糖監測系統(CGM),雖然為糖尿病管理提供了工具,但在駕駛安全的方面,仍然不足,主要是這些方法缺乏主動提示功能,再者可能會有延遲檢測、侵入性或成本過高等因素限制了這些技術的應用範圍。此外,這些技術未能提供對於駕駛行為的直接評估,因此,在預防低血糖引起的駕駛事故方面,仍然存在不足與缺口。


當前希望彌補的缺口

這篇研究在於開發一套能夠在沒有直接血糖測量的情況下,通過分析駕駛行為和視線/頭部運動數據來偵測低血糖的ML模型。儘管機器學習在健康狀態推斷領域已有應用,但將其用於基於駕駛行為數據的低血糖檢測仍是一個新領域。這需要從車輛動態和駕駛員行為中提取有效特徵,並開發精確的算法來識別低血糖狀態,這是目前研究尚未廣泛探討的。

  1. 即時和非侵入性檢測低血糖的需求:現有的血糖監測方法,如連續血糖監測系統(CGM),為糖尿病患者提供了重要的血糖控制工具,但這些方法存在診斷延遲、侵入性、高成本及低可用性等限制。特別是在駕駛汽車等需要即時反應的情況下,這些限制可能導致低血糖狀態無法得到及時檢測和處理,增加了事故的風險。
  2. 基於生物醫學信號的健康狀態推斷:雖然機器學習(ML)技術已被應用於從生物醫學訊號中推斷健康狀態,但如何精確地從駕駛行為和視線/頭部運動中識別低血糖狀態仍然是一個挑戰。這需要對大量的駕駛數據進行分析,以識別與低血糖相關的特定行為模式。
  3. 真實汽車駕駛條件下的低血糖檢測:以往的研究主要集中在模擬駕駛條件下的低血糖檢測,而真實汽車駕駛條件下的低血糖檢測研究相對較少。真實駕駛條件下的環境變數更為複雜,如天氣、路況等,這些因素都可能影響駕駛行為和車輛動態,增加了檢測低血糖狀態的難度。
  4. 數據來源的創新應用:如何創新利用車輛控制器區域網絡(CAN)和駕駛員監測攝像頭(DMC)所提供的高分辨率、實時駕駛特性和視線/頭部運動數據來偵測低血糖,仍然是一個未被充分探索的領域。將這些數據源與ML技術結合,開發出一套高效的低血糖檢測系統,對於提高糖尿病患者的駕駛安全具有重要意義。

解決方案

本研究透過收集30位1型糖尿病患者在正常血糖和低血糖狀態下的駕駛及視線/頭部運動數據,構建並評估了基於這些數據的ML模型。這項工作首次在真實汽車駕駛條件下進行了低血糖檢測的研究,並成功證明了使用僅限於駕駛特性和視線/頭部動作數據的ML方法在非侵入性地偵測低血糖方面的有效性。研究結果顯示,這種方法能夠以高準確率(AUROC值達0.80)識別低血糖狀態,即使在僅使用駕駛特性或視線/頭部動作數據的情況下,檢測性能也保持在較高水平(AUROC值分別為0.73和0.70)。

數據收集與處理

  1. 受試者選擇:選取了30名類型1糖尿病患者作為受試對象,這些受試者在受控的正常血糖和低血糖狀態下進行駕駛,模擬真實的駕駛情境。
  2. 數據來源:收集駕駛特性和視線/頭部運動的數據,包括車輛控制器區域網絡(CAN)數據和駕駛員監測攝像頭(DMC)數據。
  3. 特徵提取:從這些數據中提取出與駕駛行為相關的關鍵特徵,如轉向角度、加速度、視線和頭部運動的速度和加速度等。

機器學習模型開發

  1. 模型構建:利用提取的特徵,構建了機器學習模型來預測低血糖狀態。這一過程涉及到選擇適合的機器學習算法,並對模型進行訓練和優化。
  2. 交叉驗證:透過交叉驗證的方法評估模型的準確性,確保模型在未見過的數據上也能保持高度的預測準確率。
  3. 模型評估:通過計算接收者操作特徵曲線(ROC)下面積(AUROC)等指標來評估模型性能,確定模型在偵測低血糖狀態上的有效性。

實際應用與潛力

  1. 非侵入性偵測:這一解決方案實現了在不需直接測量血糖的情況下偵測低血糖的目標,為糖尿病患者提供了一個安全的駕駛環境。
  2. 行為洞察:透過解析駕駛行為和視線/頭部運動數據,研究提供了對於糖尿病患者在低血糖狀態下行為變化的新見解。
  3. 技術推廣與未來發展:此模型的成功不僅意味著在糖尿病管理領域的一大突破,也為將來機器學習技術在其他醫療健康監測領域的應用奠定了基礎。

此外,通過對ML模型進行可解釋性分析,研究顯示了低血糖狀態下人們駕駛行為的變化,為未來研究提供了新的方向,也為糖尿病患者駕駛安全提供了潛在的改進策略。這些發現不僅推進了醫學和機器學習領域的交叉研究,也為實現更安全的駕駛環境和提高糖尿病患者生活質量開辟了新途徑。

資料來源:Machine Learning to Infer a Health State Using Biomedical Signals — Detection of Hypoglycemia in People with Diabetes while Driving Real Cars


M-Insight : AI科技創新 分享有關人工智慧對於產業與企業的實務應用、研究成果、產業情報等資訊,歡迎人工智慧、醫藥生技、科技管理領域的同好、專家學者、醫師、研究人員與業界朋友一同參與交流。
留言0
查看全部
發表第一個留言支持創作者!
近年來,人工智能與機器學習(AI/ML)技術快速發展,醫療設備數量呈現明顯增長趨勢。本文根據世界衛生組織國際臨床試驗註冊平臺(ICTRP)的臨床試驗數據進行全面分析,瞭解AI/ML SaMD的發展趨勢及地理分佈特徵,並強調了國際合作臨床試驗的必要性。
多模態資料與模型目前在人工智慧領域是主流話題之一。多模態對於醫學研究之所以重要,是因為它能夠提供疾病的全面觀點,從來自不同來源和類型的數據(如醫學影像、文字病歷、臨床數據與生理訊號等)結合起來,使得醫學偵測與診斷更加準確和全面。
這份研究分享了使用AI進行醫療研究的流程,介紹了三角纖維軟骨複合體(TFCC)的定位、重要性,以及如何應用MRI和AI協助進行影像判讀進而降低患者痛楚。研究使用兩種卷積神經網絡進行深度學習模型的設計與訓練以預測TFCC損傷的機率。最後得出結論MRNet 框架較能夠檢測TFCC損傷並協助醫師準確診斷。
本篇文章主要介紹一位菲律賓學者對使用大型語言模型產生文章的想法,說明如何利用AI技術進行學術寫作,以及提示工程的重要性。文中介紹了許多在醫學領域的應用以及學術寫作中的多種提示類型。文章還提到了。本文將會給讀者帶來對AI在學術寫作領域的啟發。
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
今天分享長期觀察 AI 議題的 Martin Signoux 對2024年AI技術領域的觀點。他認為「大型語言模型」未來將不具備任何優勢,未來發展是「大型多模態模型」,而且在2024年的議題量將會超越「大型語言模型」,此觀點也受到楊立昆(Yann LeCuu)的認同。
近年來,人工智能與機器學習(AI/ML)技術快速發展,醫療設備數量呈現明顯增長趨勢。本文根據世界衛生組織國際臨床試驗註冊平臺(ICTRP)的臨床試驗數據進行全面分析,瞭解AI/ML SaMD的發展趨勢及地理分佈特徵,並強調了國際合作臨床試驗的必要性。
多模態資料與模型目前在人工智慧領域是主流話題之一。多模態對於醫學研究之所以重要,是因為它能夠提供疾病的全面觀點,從來自不同來源和類型的數據(如醫學影像、文字病歷、臨床數據與生理訊號等)結合起來,使得醫學偵測與診斷更加準確和全面。
這份研究分享了使用AI進行醫療研究的流程,介紹了三角纖維軟骨複合體(TFCC)的定位、重要性,以及如何應用MRI和AI協助進行影像判讀進而降低患者痛楚。研究使用兩種卷積神經網絡進行深度學習模型的設計與訓練以預測TFCC損傷的機率。最後得出結論MRNet 框架較能夠檢測TFCC損傷並協助醫師準確診斷。
本篇文章主要介紹一位菲律賓學者對使用大型語言模型產生文章的想法,說明如何利用AI技術進行學術寫作,以及提示工程的重要性。文中介紹了許多在醫學領域的應用以及學術寫作中的多種提示類型。文章還提到了。本文將會給讀者帶來對AI在學術寫作領域的啟發。
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
今天分享長期觀察 AI 議題的 Martin Signoux 對2024年AI技術領域的觀點。他認為「大型語言模型」未來將不具備任何優勢,未來發展是「大型多模態模型」,而且在2024年的議題量將會超越「大型語言模型」,此觀點也受到楊立昆(Yann LeCuu)的認同。
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
Nvidia在第四季度財報顯示出強勁表現,超出華爾街預期的盈利和銷售,尤其AI和數據中心業務取得重要突破。然而,供應鏈和數據中心挑戰尚需解決。
Thumbnail
Palantir Technologies在宣布第四季度收入超出分析師預測後,盤後交易中出現超過19%的顯著增長。2024年全年指引與華爾街的估算非常一致。 主要指標: - 每股盈利:調整後為8美分,LSEG(前身為Refinitiv)預期為8美分
Thumbnail
本文延續先前刊登於《服務研究期刊》(Journal of Service Research)的論文《使用人工智慧執行服務》(Artificial Intelligence in Service),該論文建立了四種AI類型的框架,包括機械型AI、分析型AI、直覺型AI和共鳴型AI。基於這個框架,我們將
Thumbnail
美國南加州大學的學者羅伯特·科齊涅茨(Robert V. Kozinets)與烏爾麗克‧格雷策爾(Ulrike Gretzel)於2021年1月在《行銷管理期刊》(Journal of Marketing)的評論中,深入探討了行銷人員在應用人工智慧(AI)時所面臨的三大重要挑戰。 挑戰一:理解困難
Thumbnail
儘管演員都是生面孔,靠著緊湊的劇情,還有集集都超級吊人胃口的結尾,從Netflix排行來看也是吸引不少觀眾的目光,但最後的謎團真的太好猜,理應是最大的「梗」變成「沒梗」不只可說是整部影集的致命缺點,也讓它最高只能獲得四星推薦的評價。
Thumbnail
隨著網路以及數位化的興起,資料比以往更加的容易傳播以及儲存,過去使用者總是需要主動式的去獲取重要的資訊,然而,現在每天數以萬計的海量資料,我們是否已經漸漸變成被動式的接收各種重要或不重要的資訊了呢?
Thumbnail
十幾年前還在上班累積操作資金的時候(沒辦法! 沒有富爸爸), 從事的是資料科學(data science)相關, 也是Oracle ERP的data architect, 並受過SAP Data Warehousing 模組的訓練
Thumbnail
人工智慧始終還是「人工」,機器需要透過人類的訓練,像人類一樣經過學習才能夠進行反饋。但它與人不同的地方則是不會疲憊、可以不斷的進行學習,這也進而加快了應用的時間。而牽涉到聯想及整合的時候,它依舊無法取代人類;人類在聽音樂時產生的觀點,也是人工智慧無法想到的。
Thumbnail
人工智慧、機器學習、深度學習這三個名詞,都是最近經常被提起的行話;它們彼此緊密相關,但意義又不太相同,偶爾還會被誤用。本文就用白話來說明一下,這三個奇妙的東西到底是什麼。
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
Nvidia在第四季度財報顯示出強勁表現,超出華爾街預期的盈利和銷售,尤其AI和數據中心業務取得重要突破。然而,供應鏈和數據中心挑戰尚需解決。
Thumbnail
Palantir Technologies在宣布第四季度收入超出分析師預測後,盤後交易中出現超過19%的顯著增長。2024年全年指引與華爾街的估算非常一致。 主要指標: - 每股盈利:調整後為8美分,LSEG(前身為Refinitiv)預期為8美分
Thumbnail
本文延續先前刊登於《服務研究期刊》(Journal of Service Research)的論文《使用人工智慧執行服務》(Artificial Intelligence in Service),該論文建立了四種AI類型的框架,包括機械型AI、分析型AI、直覺型AI和共鳴型AI。基於這個框架,我們將
Thumbnail
美國南加州大學的學者羅伯特·科齊涅茨(Robert V. Kozinets)與烏爾麗克‧格雷策爾(Ulrike Gretzel)於2021年1月在《行銷管理期刊》(Journal of Marketing)的評論中,深入探討了行銷人員在應用人工智慧(AI)時所面臨的三大重要挑戰。 挑戰一:理解困難
Thumbnail
儘管演員都是生面孔,靠著緊湊的劇情,還有集集都超級吊人胃口的結尾,從Netflix排行來看也是吸引不少觀眾的目光,但最後的謎團真的太好猜,理應是最大的「梗」變成「沒梗」不只可說是整部影集的致命缺點,也讓它最高只能獲得四星推薦的評價。
Thumbnail
隨著網路以及數位化的興起,資料比以往更加的容易傳播以及儲存,過去使用者總是需要主動式的去獲取重要的資訊,然而,現在每天數以萬計的海量資料,我們是否已經漸漸變成被動式的接收各種重要或不重要的資訊了呢?
Thumbnail
十幾年前還在上班累積操作資金的時候(沒辦法! 沒有富爸爸), 從事的是資料科學(data science)相關, 也是Oracle ERP的data architect, 並受過SAP Data Warehousing 模組的訓練
Thumbnail
人工智慧始終還是「人工」,機器需要透過人類的訓練,像人類一樣經過學習才能夠進行反饋。但它與人不同的地方則是不會疲憊、可以不斷的進行學習,這也進而加快了應用的時間。而牽涉到聯想及整合的時候,它依舊無法取代人類;人類在聽音樂時產生的觀點,也是人工智慧無法想到的。
Thumbnail
人工智慧、機器學習、深度學習這三個名詞,都是最近經常被提起的行話;它們彼此緊密相關,但意義又不太相同,偶爾還會被誤用。本文就用白話來說明一下,這三個奇妙的東西到底是什麼。