Probabilistic Graphical Model 1.3節 - Part 1

更新 發佈閱讀 7 分鐘

以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。

1.3 Overview and Roadmap

1.3.1 Overview of Chapters

We begin in part I, by describing the most basic type of graphical models, which are the focus of most of the book. These models encode distributions over a fixed set of random variables. We describe how graphs can be used to encode distributions over such spaces, and what the properties of such distributions are.

  • In chapter 3, we describe the Bayesian network representation, based on directed graphs. We describe how a Bayesian network can encode a probability distribution. We also analyze the independence properties induced by the graph structure.


  • In chapter 4, we move to Markov networks, the other main category of probabilistic graphical models. Here also we describe the independencies defined by the graph and the induced factorization of the distribution. We also discuss the relationship between Markov networks and Bayesian networks, and briefly describe a framework that unifies both.


  • In chapter 5, we delve a little deeper into the representation of the parameters in probabilistic models, focusing mostly on Bayesian networks, whose parameterization is more constrained. We describe representations that capture some of the finer-grained structure of the distribution, and show that, here also, capturing structure can provide significant gains.


  • In chapter 6, we turn to formalisms that extend the basic framework of probabilistic graphical models to settings where the set of variables is no longer rigidly circumscribed in advance. One such setting is a temporal one, where we wish to model a system whose state evolves over time, requiring us to consider distributions over entire trajectories, We describe a compact representation — a dynamic Bayesian network — that allows us to represent structured systems that evolve over time. We then describe a family of extensions that introduce various forms of higher level structure into the framework of probabilistic graphical models. Specifically, we focus on domains containing objects (whether concrete or abstract), characterized by attributes, and related to each other in various ways. Such domains can include repeated structure, since different objects of the same type share the same probabilistic model. These languages provide a significant extension to the expressive power of the standard graphical models.


  • In chapter 7, we take a deeper look at models that include continuous variables. Specifically, we explore the properties of the multivariate Gaussian distribution and the representation of such distributions as both directed and undirected graphical models. Although the class of Gaussian distributions is a limited one and not suitable for all applications, it turns out to play a critical role even when dealing with distributions that are not Gaussian.


  • In chapter 8, we take a deeper, more technical look at probabilistic models, defining a general framework called the exponential family, that encompasses a broad range of distributions. This chapter provides some basic concepts and tools that will turn out to play an important role in later development.
留言
avatar-img
Learn AI 不 BI
246會員
1.0K內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2024/05/12
大家在跟Chat GPT互動的時候,會不會覺得常常雞同鴨講 我們梳理了一些提升Chat GPT回答能力的作法 ChatGPT回答不是你要的怎麼辦? 我們也實作了當中的一種方法,叫做RAG於 自己做免錢Chat GPT吧 這篇文章,我們談談其他技巧,稱為「透過LoRA執行Fine Tuning」
2024/05/12
大家在跟Chat GPT互動的時候,會不會覺得常常雞同鴨講 我們梳理了一些提升Chat GPT回答能力的作法 ChatGPT回答不是你要的怎麼辦? 我們也實作了當中的一種方法,叫做RAG於 自己做免錢Chat GPT吧 這篇文章,我們談談其他技巧,稱為「透過LoRA執行Fine Tuning」
2024/05/03
工欲善其事,必先利其器,要打造屬於自己的Chat GPT之前,我們先學習怎麼建立Google免費提供的Colab環境,它可以免費使用GPU來加速AI的運算,非常適合沒有錢添購GPU,但又想學習前沿AI技術的人。 第一步:打開Google瀏覽器,並點選右上方的「方格子點點」,接著選擇「雲端硬碟」
2024/05/03
工欲善其事,必先利其器,要打造屬於自己的Chat GPT之前,我們先學習怎麼建立Google免費提供的Colab環境,它可以免費使用GPU來加速AI的運算,非常適合沒有錢添購GPU,但又想學習前沿AI技術的人。 第一步:打開Google瀏覽器,並點選右上方的「方格子點點」,接著選擇「雲端硬碟」
2024/04/26
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 在第二章會介紹機率相關概念,這也是貫穿整本書的基礎。 2.1.1.2 Probability Distributions
2024/04/26
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 在第二章會介紹機率相關概念,這也是貫穿整本書的基礎。 2.1.1.2 Probability Distributions
看更多
你可能也想看
Thumbnail
我每週都會為自己設計一趟小旅行,像是給日常的一個深呼吸。準備著簡單的行李,在導航上設定好今天想去的地方,播放一張剛好符合心情的歌單,一場逃離日常的小旅行就此展開。 說走就走的自由很浪漫,但背後的現實是,從加油、路途中補給、到抵達目的地的小花費,每一筆都需要精打細算,才能不讓放鬆變成負擔。好在有玉山
Thumbnail
我每週都會為自己設計一趟小旅行,像是給日常的一個深呼吸。準備著簡單的行李,在導航上設定好今天想去的地方,播放一張剛好符合心情的歌單,一場逃離日常的小旅行就此展開。 說走就走的自由很浪漫,但背後的現實是,從加油、路途中補給、到抵達目的地的小花費,每一筆都需要精打細算,才能不讓放鬆變成負擔。好在有玉山
Thumbnail
本文介紹玉山銀行推出的玉山 Unicard,是一張非常符合「小資族、學生、上班族都好上手」的高回饋信用卡!三種回饋方案自由切換,行動支付、百貨、旅遊、百大指定通路全面涵蓋,新戶最高享 7.5% 回饋。回饋透明、操作簡單,非常推薦學生、小資族與上班族。
Thumbnail
本文介紹玉山銀行推出的玉山 Unicard,是一張非常符合「小資族、學生、上班族都好上手」的高回饋信用卡!三種回饋方案自由切換,行動支付、百貨、旅遊、百大指定通路全面涵蓋,新戶最高享 7.5% 回饋。回饋透明、操作簡單,非常推薦學生、小資族與上班族。
Thumbnail
信用卡如今已是現代人日常消費的必需品。回顧其誕生,竟源於一段用餐忘記帶錢的窘境。本文將帶您瞭解信用卡的故事,並介紹「玉山Unicard」,一張涵蓋百大通路、提供彈性回饋的信用卡,尤其適合追求方便與高回饋的消費者。文章將分享誠品生活、全盈+PAY等實際使用情境,並提供新戶申辦優惠資訊。
Thumbnail
信用卡如今已是現代人日常消費的必需品。回顧其誕生,竟源於一段用餐忘記帶錢的窘境。本文將帶您瞭解信用卡的故事,並介紹「玉山Unicard」,一張涵蓋百大通路、提供彈性回饋的信用卡,尤其適合追求方便與高回饋的消費者。文章將分享誠品生活、全盈+PAY等實際使用情境,並提供新戶申辦優惠資訊。
Thumbnail
玉山銀行新推出的Unicard信用卡你發現了嗎?主打可透過玉山Wallet App,每月自由切換簡單選、任意選及UP選三種方案,讓你依照消費習慣擁有不同的回饋方案。其中我自己很喜歡它百大指定消費中的Line Pay行動支付,能讓我以最簡單的方式獲得最高的回饋!同時文中更分享我實測的眉角,快來看下去!
Thumbnail
玉山銀行新推出的Unicard信用卡你發現了嗎?主打可透過玉山Wallet App,每月自由切換簡單選、任意選及UP選三種方案,讓你依照消費習慣擁有不同的回饋方案。其中我自己很喜歡它百大指定消費中的Line Pay行動支付,能讓我以最簡單的方式獲得最高的回饋!同時文中更分享我實測的眉角,快來看下去!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 18中,介紹了OpenAI的GPT模型如何利用Inference的Pipeline產生Token。 完整Pipeline可能
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 18中,介紹了OpenAI的GPT模型如何利用Inference的Pipeline產生Token。 完整Pipeline可能
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News