付費限定

[OpenCV][Python]圖片清晰度如何檢測?

更新於 發佈於 閱讀時間約 2 分鐘

首先我們先用小畫家,創建一個簡單的十字箭頭圖,在用高斯模糊將圖用模糊來模擬圖片糊掉的狀況。

raw-image


如何檢測呢?

先假設在圖像清晰的狀況下,取邊緣的話線條應該是很明顯的吧,模糊的情況下,邊緣線條應該就會變多?

看下圖,由左看到右,在圖片清晰的狀況下,線條是相當明顯的

raw-image

那有什麼方法將其量化成數字?

利用變異數的方法

變異數衡量的是數據分布的離散程度,變異數越大,數據點之間的差異越大。

舉例:

  1. 模糊圖像: 模糊圖像中的像素值變化平滑,梯度值較小且變化不大,這會導致梯度幅值的變異數較小。
  2. 清晰圖像: 清晰圖像中的像素值變化劇烈,邊緣明顯,梯度值較大且變化明顯,這會導致梯度幅值的變異數較大。

為什麼圖像越清楚,變異數越大?

當圖像清晰時,邊緣和紋理更加明顯和銳利,因此每個像素的梯度值會有更大的變化,這導致梯度幅值的變異數增加。

以行動支持創作者!付費即可解鎖
本篇內容共 1046 字、0 則留言,僅發佈於[Python][OpenCV]學習心得筆記你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
螃蟹_crab的沙龍
148會員
255內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
螃蟹_crab的沙龍的其他內容
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/03/13
本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。 🔹 1. 設計目標 使用二值化處理與形態學運算來強化影像 計算螺絲之間的間距 視覺化結果,標記最大間距並顯示數值 🔹 2. 測試用螺絲影像 🔹 3.
Thumbnail
2025/03/13
本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。 🔹 1. 設計目標 使用二值化處理與形態學運算來強化影像 計算螺絲之間的間距 視覺化結果,標記最大間距並顯示數值 🔹 2. 測試用螺絲影像 🔹 3.
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
看更多
你可能也想看
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
首先我們先用小畫家,創建一個簡單的十字箭頭圖,在用高斯模糊將圖用模糊來模擬圖片糊掉的狀況。 如何檢測呢? 先假設在圖像清晰的狀況下,取邊緣的話線條應該是很明顯的吧,模糊的情況下,邊緣線條應該就會變多? 看下圖,由左看到右,在圖片清晰的狀況下,線條是相當明顯的 那有什麼方法將其量化成數字?
Thumbnail
首先我們先用小畫家,創建一個簡單的十字箭頭圖,在用高斯模糊將圖用模糊來模擬圖片糊掉的狀況。 如何檢測呢? 先假設在圖像清晰的狀況下,取邊緣的話線條應該是很明顯的吧,模糊的情況下,邊緣線條應該就會變多? 看下圖,由左看到右,在圖片清晰的狀況下,線條是相當明顯的 那有什麼方法將其量化成數字?
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
在影像處理中,我們總是想要讓特徵更加明顯一點,可以使用銳利化的方式將特徵的邊緣增強,提升影像的細節,圖像銳利後就會有提升解析度的感覺。 拉普拉斯運算子是一種常用於影像增強的方法之一,特別是用於提高影像的邊緣和細節。 在OpenCV中,你可以使用cv2.Laplacian函數來應用拉普拉斯運算子。
Thumbnail
在影像處理中,我們總是想要讓特徵更加明顯一點,可以使用銳利化的方式將特徵的邊緣增強,提升影像的細節,圖像銳利後就會有提升解析度的感覺。 拉普拉斯運算子是一種常用於影像增強的方法之一,特別是用於提高影像的邊緣和細節。 在OpenCV中,你可以使用cv2.Laplacian函數來應用拉普拉斯運算子。
Thumbnail
直方圖均衡化處理是一種通過調整圖像的直方圖來改變圖像外觀和質量的圖像處理技術。這通常涉及對圖像的亮度、對比度和顏色分佈進行調整 此方法對於背景和前景均亮或均暗的影像很有用。​並在曝光過度或曝光不足的照片中獲得更好的細節。
Thumbnail
直方圖均衡化處理是一種通過調整圖像的直方圖來改變圖像外觀和質量的圖像處理技術。這通常涉及對圖像的亮度、對比度和顏色分佈進行調整 此方法對於背景和前景均亮或均暗的影像很有用。​並在曝光過度或曝光不足的照片中獲得更好的細節。
Thumbnail
直方圖是對圖像中像素強度分布的圖形表示。通過分析直方圖,我們可以獲得有關圖像對比度、亮度和色彩分佈的有用信息。
Thumbnail
直方圖是對圖像中像素強度分布的圖形表示。通過分析直方圖,我們可以獲得有關圖像對比度、亮度和色彩分佈的有用信息。
Thumbnail
廢話不多說,先上成果圖。 成果圖 主要實現方法 1.灰階後利用cv2.Canny找物體的邊緣 2.找物件相對應的直線cv2.HoughLines 3.分類為橫向和垂直的直線角度,求得相對於物件的旋轉角度 4.根據算出的相對應旋轉角度將物件轉正
Thumbnail
廢話不多說,先上成果圖。 成果圖 主要實現方法 1.灰階後利用cv2.Canny找物體的邊緣 2.找物件相對應的直線cv2.HoughLines 3.分類為橫向和垂直的直線角度,求得相對於物件的旋轉角度 4.根據算出的相對應旋轉角度將物件轉正
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
涉及圖像處理和計算機視覺時,色彩空間轉換是一個常見操作,應用如下: 降維: 將一張彩色圖像轉換為灰度圖像可以減少數據的維度,簡化處理過程,同時在某些情況下保留重要的視覺信息。 突顯特徵: 在某些情況下,某些色彩通道可能包含冗餘或不必要的信息,通過轉換到其他色彩空間,可以更好地突顯圖像中的重要特徵
Thumbnail
涉及圖像處理和計算機視覺時,色彩空間轉換是一個常見操作,應用如下: 降維: 將一張彩色圖像轉換為灰度圖像可以減少數據的維度,簡化處理過程,同時在某些情況下保留重要的視覺信息。 突顯特徵: 在某些情況下,某些色彩通道可能包含冗餘或不必要的信息,通過轉換到其他色彩空間,可以更好地突顯圖像中的重要特徵
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News