付費限定

[OpenCV][Python]OCR分割及增加間隔[單排文字]

更新於 發佈於 閱讀時間約 11 分鐘

在文字辨識中,適當的增加一文字彼此間的間隔是有幫助於辨識的,原因在大多數OCR引擎在處理字符時會依賴空白區域區分不同的字符。如果字符之間的間隔過小,OCR引擎可能會將相鄰的字符誤認為一個單一的字符或難以正確切割字符。增加間隔可以幫助OCR引擎準確地識別和切割每個字符。

本文說明如何增加OCR間的間隔,及印出OCR每一個文字的位置及高跟寬。

比較圖

raw-image


原圖

原圖

原圖

增加間隔

raw-image

以行動支持創作者!付費即可解鎖
本篇內容共 4539 字、2 則留言,僅發佈於[Python][OpenCV]學習心得筆記你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
螃蟹_crab的沙龍
149會員
292內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。 興趣是攝影,踏青,探索未知領域。 人生就是不斷的挑戰及自我認清,希望老了躺在床上不會後悔自己什麼都沒做。
螃蟹_crab的沙龍的其他內容
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/03/13
本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。 🔹 1. 設計目標 使用二值化處理與形態學運算來強化影像 計算螺絲之間的間距 視覺化結果,標記最大間距並顯示數值 🔹 2. 測試用螺絲影像 🔹 3.
Thumbnail
2025/03/13
本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。 🔹 1. 設計目標 使用二值化處理與形態學運算來強化影像 計算螺絲之間的間距 視覺化結果,標記最大間距並顯示數值 🔹 2. 測試用螺絲影像 🔹 3.
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
看更多
你可能也想看
Thumbnail
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
Thumbnail
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
在文字辨識中,適當的增加一文字彼此間的間隔是有幫助於辨識的,原因在大多數OCR引擎在處理字符時會依賴空白區域來區分不同的字符。如果字符之間的間隔過小,OCR引擎可能會將相鄰的字符誤認為一個單一的字符或難以正確切割字符。增加間隔可以幫助OCR引擎更準確地識別和切割每個字符。 本文說明如何增加OCR間
Thumbnail
在文字辨識中,適當的增加一文字彼此間的間隔是有幫助於辨識的,原因在大多數OCR引擎在處理字符時會依賴空白區域來區分不同的字符。如果字符之間的間隔過小,OCR引擎可能會將相鄰的字符誤認為一個單一的字符或難以正確切割字符。增加間隔可以幫助OCR引擎更準確地識別和切割每個字符。 本文說明如何增加OCR間
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
學習如何將掃描的PDF轉換為可搜索文本,並高效管理和查找文件。探索先進的OCR技術如何提升文檔處理效率。
Thumbnail
學習如何將掃描的PDF轉換為可搜索文本,並高效管理和查找文件。探索先進的OCR技術如何提升文檔處理效率。
Thumbnail
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
Thumbnail
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
Thumbnail
EasyOCR是一個能夠幫助你對圖片中的文字進行辨識的工具,透過進階分析,可以應用在文件掃描、自動化數據輸入、發票掃描等領域。本章節將介紹如何安裝、引用模型、進行文字辨識、以及辨識結果的分析。透過學習,你可以建立屬於自己的文字辨識系統。
Thumbnail
EasyOCR是一個能夠幫助你對圖片中的文字進行辨識的工具,透過進階分析,可以應用在文件掃描、自動化數據輸入、發票掃描等領域。本章節將介紹如何安裝、引用模型、進行文字辨識、以及辨識結果的分析。透過學習,你可以建立屬於自己的文字辨識系統。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News