植物的 「分子眼睛」: 揭秘光敏素B如何讓植物 「看見」 陽光

更新於 發佈於 閱讀時間約 5 分鐘

植物如何看見光?這個大哉問,應該是從達爾文看到窗邊的植物會朝著光源彎曲生長...或者,從更早的年代,就有人對為何植物可以看見光感到好奇了。


達爾文在1881年分享了他對植物向光性的研究,不過光敏素(phytochrome)的研究,大概還要更晚些。在Linda Sage的「Pigment of Imagination」一書中,有非常完整的敘述。


植物之所以能看見光,是因為有光敏素。光敏素就像植物的眼睛,讓植物可以看到光的顏色以及光的強弱。當然,從某種意義上來說,我們也可以說植物有點色盲,因為植物只會看它需要的光的顏色對不對,以及強度夠不夠強。所以,植物的光敏素只負責看紅光與紅外光,另外還有隱花色素(cryptochrome)與向光素(phototropin)是負責看藍光,而UVR8則負責看短波紫外光。


在找到光敏素(phytochrome)之後,科學家們也很快就發現,光敏素會因為光的照射而轉換構形(conformation),而這個構形的轉換,是因為光敏素中間的色素分子PΦB(phytochromobilin)在照光之後,構形產生變化-它的C15=C16雙鍵從順式(cis)構型轉變為反式(trans)構型,或者可以說,整個分子從「彎的」變成「直的」開始。


因為PΦB被包在光敏素分子的裡面,所以當PΦB「截彎取直」以後,與光敏素之間的互動就會開始產生變化。但是,這中間的詳細變化,以及發生變化後如何產生後續的效應,過去一直不是很清楚。


最近,有研究團隊以突變株的阿拉伯芥光敏素B與光敏素互動分子PIF6來進行冷凍電子顯微鏡,觀察到底光敏素看到光之後,會發生什麼事。


為什麼挑選光敏素B,是因為光敏素B是所謂的「主要」光敏素。在阿拉伯芥裡,光敏素A與光敏素B,負責主要的光感應工作,而光敏素B比光敏素A的重要性更高。缺少光敏素B的阿拉伯芥,在一般生長狀況下葉片呈現淡綠色且狹長,莖細細長長,節間大幅延長,開花時間大為提前,就是一副「我看不到光快不行了」的樣子。


為什麼要使用突變的光敏素B呢?因為野生型的光敏素B不會全部都停留在一個構形,就算給它照射高量的紅光或紅外光,也還會有大約3%的光敏素是另一個構形。為了觀察方便,研究團隊選了永遠保持活化的光敏素B突變種Y276H來進行研究。


當紅光照射到光敏素B的PΦB時,PΦB中的C15=C16雙鍵從順式(cis)構型轉變為反式(trans)構型(也就是整個分子從「彎的」變成「直的」),使得D吡咯環翻轉180°,這個變化使得位於光敏素B前端(N端)的PHY結構域發生了明顯的旋轉,導致PHY結構域的重新排列,並影響了其與GAF和nPAS等其他結構域的相互作用,從而改變了整個光敏素的結構。


其中有一個明顯的變化是PHY-tongue的出現。這個區域本來是β-片層結構(Pr狀態),而在紅光照射後會轉變為α-螺旋結構(Pfr狀態)。這個轉變是光敏素B活化過程中的關鍵步驟,因為它不僅影響了光敏素B的結構穩定性,還促進了它與光敏素互動因子(PIFs)的結合,從而啟動下游的信息傳導路徑。


另外,PHY結構域的變化會使得NTE結構域(N-terminal extension)變得更加靈活,並促進了NTE與光敏素互動因子(PIFs)的結合。這一結合不僅穩定了NTE的結構,還促進了光敏素B的活化,從而啟動了信號傳導路徑。


光敏素B在受到紅光照射後由Pr轉為Pfr,接著就會開始與許多不同的分子互動。為了了解光敏素如何與其它的分子互動,研究團隊選擇了PIF6來當代表,看看接下來會發生什麼事。


他們發現,PIF6與光敏素B的複合物是由兩個光敏素B和一個PIF6組成的。它們的結合主要涉及光敏素B的N端延伸域(N-terminal extension, NTE)以及光敏素特有的PHY域中的GAF模組。具體來說,PIF6的N端的第15-37胺基酸與光敏素B的NTE-nPAS-GAF模組結合,而PIF6的C端的第39-60胺基酸則被夾在GAF模組之間。這一結合不僅促進了PIF6的識別,還導致NTE的結構重塑,從而增強了光敏素B的穩定性。


當PIF6與光敏素B-Pfr結合後,這一複合物會進一步調控下游基因的表現,影響植物的生長和發育,例如促進種子發芽、葉片展開和花期調控等。


所以,透過研究光敏素B的結構,我們對於植物如何看見光更有了解,也希望從這些研究成果,可以更進一步了解光敏素如何將信息傳到其它下游的成員,讓植物生長發育!


參考文獻:


Wang et al., Light-induced remodeling of phytochrome B enables signal transduction by phytochromeinteracting factor, Cell (2024), https://doi.org/10.1016/j.cell.2024.09.005


留言
avatar-img
留言分享你的想法!
avatar-img
老葉報報
242會員
781內容數
主要介紹關於植物的新資訊,但是也會介紹一些其他的。 版主在大學教植物生理學,也教過生物化學。 如有推薦書籍需求,請e-mail:susanyeh816@gmail.com
老葉報報的其他內容
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
看更多
你可能也想看
Thumbnail
孩子寫功課時瞇眼?小心近視!這款喜光全光譜TIONE⁺光健康智慧檯燈,獲眼科院長推薦,網路好評不斷!全光譜LED、180cm大照明範圍、5段亮度及色溫調整、350度萬向旋轉,讓孩子學習更舒適、保護眼睛!
Thumbnail
孩子寫功課時瞇眼?小心近視!這款喜光全光譜TIONE⁺光健康智慧檯燈,獲眼科院長推薦,網路好評不斷!全光譜LED、180cm大照明範圍、5段亮度及色溫調整、350度萬向旋轉,讓孩子學習更舒適、保護眼睛!
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
創作者營運專員/經理(Operations Specialist/Manager)將負責對平台成長及收入至關重要的 Partnership 夥伴創作者開發及營運。你將發揮對知識與內容變現、影響力變現的精準判斷力,找到你心中的潛力新星或有聲量的中大型創作者加入 vocus。
Thumbnail
植物如何看見光?這個大哉問,應該是從達爾文看到窗邊的植物會朝著光源彎曲生長...或者,從更早的年代,就有人對為何植物可以看見光感到好奇了。 現在我們已經知道是光敏素,但是光敏素在被光照射後,接下來會發生什麼事呢?這就需要更多的研究了。
Thumbnail
植物如何看見光?這個大哉問,應該是從達爾文看到窗邊的植物會朝著光源彎曲生長...或者,從更早的年代,就有人對為何植物可以看見光感到好奇了。 現在我們已經知道是光敏素,但是光敏素在被光照射後,接下來會發生什麼事呢?這就需要更多的研究了。
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
類囊體上負責收集光能的色素主要為葉綠素(chlorophyll)與類胡蘿蔔素(carotenoid)。葉綠素分為為葉綠體a和葉綠體b,吸收光波長主要分為葉綠體a吸收640~660nm,而葉綠體b吸收430~450nm。另外類胡蘿蔔素主要分為a、B、r-類胡蘿蔔素。
Thumbnail
類囊體上負責收集光能的色素主要為葉綠素(chlorophyll)與類胡蘿蔔素(carotenoid)。葉綠素分為為葉綠體a和葉綠體b,吸收光波長主要分為葉綠體a吸收640~660nm,而葉綠體b吸收430~450nm。另外類胡蘿蔔素主要分為a、B、r-類胡蘿蔔素。
Thumbnail
在光對植物生理的影響中,兩個最重大的發現是「光合作用」和「光週期現象」,不過,這兩種現象是植物所獨有的功夫嗎?我們又可以從這兩種現象偷窺到多少光感應系統的作用機密呢?一起來探索吧!
Thumbnail
在光對植物生理的影響中,兩個最重大的發現是「光合作用」和「光週期現象」,不過,這兩種現象是植物所獨有的功夫嗎?我們又可以從這兩種現象偷窺到多少光感應系統的作用機密呢?一起來探索吧!
Thumbnail
光究竟是如何進入生命史的演化?最早的光感應系統又背負著什麼樣的生命任務?植物和動物的視覺又有何不同?一起來探究吧!
Thumbnail
光究竟是如何進入生命史的演化?最早的光感應系統又背負著什麼樣的生命任務?植物和動物的視覺又有何不同?一起來探究吧!
Thumbnail
光是植物生長發育的基本環境因素。光不僅通過光合作用提供植物生長所需的能量,還是植物生長發育的重要調節因子。
Thumbnail
光是植物生長發育的基本環境因素。光不僅通過光合作用提供植物生長所需的能量,還是植物生長發育的重要調節因子。
Thumbnail
植物在進化過程中獲得了光敏色素,主要接受紅光區域的光,以及多種藍光受體,包括光敏色素和光敏素,以感知光環境。..除此之外,最近還發現了一種名為 UVR8 的紫外線受體。在本文中,我們解釋了這些不同植物光感受器的分子結構和功能的最新圖像,重點是光敏色素和光敏素。
Thumbnail
植物在進化過程中獲得了光敏色素,主要接受紅光區域的光,以及多種藍光受體,包括光敏色素和光敏素,以感知光環境。..除此之外,最近還發現了一種名為 UVR8 的紫外線受體。在本文中,我們解釋了這些不同植物光感受器的分子結構和功能的最新圖像,重點是光敏色素和光敏素。
Thumbnail
廣譜(擬全光譜)與窄譜(深紅藍混光) 在過去的一個世紀裡,園藝照明技術有了顯著的進步,但對光譜的操縱是一個相當新的概念。由於植物往往最強烈地吸收紅光和藍光,因此其他波長被認為對植物的生長和發育來說是不必要的。隨著 LED 技術的進步,提供單獨光譜的能力也得到了提升,粉色/紫色植物燈受到園藝照明市場的
Thumbnail
廣譜(擬全光譜)與窄譜(深紅藍混光) 在過去的一個世紀裡,園藝照明技術有了顯著的進步,但對光譜的操縱是一個相當新的概念。由於植物往往最強烈地吸收紅光和藍光,因此其他波長被認為對植物的生長和發育來說是不必要的。隨著 LED 技術的進步,提供單獨光譜的能力也得到了提升,粉色/紫色植物燈受到園藝照明市場的
Thumbnail
植物的宜人綠色外觀,是由於它們在500-600 nm範圍內的波長反射率所致,可能給人一種印象,即綠光在生物學中次要的。這種觀點在一定程度上仍然存在。但是,有充分的證據表明這些波長不僅被吸收,而且還驅動和調節植物的生理反應和解剖特徵。這篇評論詳細介紹了綠光波長在植物生物學中必不可少的現有證據。吸收綠光
Thumbnail
植物的宜人綠色外觀,是由於它們在500-600 nm範圍內的波長反射率所致,可能給人一種印象,即綠光在生物學中次要的。這種觀點在一定程度上仍然存在。但是,有充分的證據表明這些波長不僅被吸收,而且還驅動和調節植物的生理反應和解剖特徵。這篇評論詳細介紹了綠光波長在植物生物學中必不可少的現有證據。吸收綠光
Thumbnail
專業玩家推薦: vitalux植物燈 (植物燈DIY LED植物燈教學 植物燈MOMO LED植物燈特力屋 檯燈型LED植物燈 LED植物燈條 小型植物燈 植物燈蝦皮 多肉植物燈DIY 全光譜植物燈 植物燈DIY調光型 植物燈門市 植物燈店家 植物燈瓦數 植物燈PTT 植物燈管哪裡買 台中植物燈) 
Thumbnail
專業玩家推薦: vitalux植物燈 (植物燈DIY LED植物燈教學 植物燈MOMO LED植物燈特力屋 檯燈型LED植物燈 LED植物燈條 小型植物燈 植物燈蝦皮 多肉植物燈DIY 全光譜植物燈 植物燈DIY調光型 植物燈門市 植物燈店家 植物燈瓦數 植物燈PTT 植物燈管哪裡買 台中植物燈) 
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News