[OpenCV][Python]計算出物件的最小矩形與旋轉角度

更新於 2024/09/27閱讀時間約 1 分鐘

本文主要介紹使用cv2.findContours找到圖像中最大物件的輪廓,再用cv2.minAreaRect取得該輪廓的最小矩形旋轉角度,並將這些資訊印上圖像中的右上角。

結果圖

raw-image

程式範例

import cv2
import numpy as np

# 讀取圖像,並轉為灰階與二值化處理
image = cv2.imread('your_image.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 轉為灰階圖像
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

# 找出圖像中的輪廓
cnts, hir = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 找出最大的輪廓
filtered_contours = max(cnts, key=cv2.contourArea)

# 取得該輪廓的最小包圍矩形及角度
rect = cv2.minAreaRect(filtered_contours) # ((center_x, center_y), (w, h), angle)
box = cv2.boxPoints(rect) # 轉換為4個頂點
# box = np.int0(box) # 將頂點轉換為整數座標 #np 1.24 以下使用
box = np.intp(box)
# 繪製最小包圍矩形
cv2.drawContours(image, [box], 0, (0, 255, 0), 2) # 綠色框,線寬為2

# 取得旋轉矩形的中心點和旋轉角度
(center_x, center_y), (w, h), angle = rect

# 顯示中心點和旋轉角度在圖片上
center_text = f"Center: ({int(center_x)}, {int(center_y)})"
angle_text = f"Angle: {int(angle)} degrees"

# 在圖像上寫入文字
cv2.putText(image, center_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) # 藍色字體
cv2.putText(image, angle_text, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) # 藍色字體

# 顯示結果
cv2.imshow("Image with Min Area Rect and Info", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

重點:

  • filtered_contours = max(cnts, key=cv2.contourArea)
    max 函數根據輪廓面積 (cv2.contourArea) 找出最大的輪廓,並將其儲存為 filtered_contours
  • cv2.minAreaRect根據計算出最小包圍矩形,並傳回其參數(center, (w, h), angle),分別是矩形的中心座標寬高旋轉角度
  • cv2.boxPoints轉換為對應的四個頂點。



進一步的應用,可以假設一些條件設定,從圖像中標註自己想要標註的物件。

avatar-img
128會員
209內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
在OpenCV中可以利用 cv2.findContours 判斷物件的形狀,可以通過計算輪廓的某些特徵來實現的。 本文主要利用cv2.arcLength與cv2.approxPolyDP來判斷三角形,正方形,矩形。檢查是否為圓形,則用通過輪廓面積和邊界框面積的比率來判斷。
先前文章有使用連通域分析來印出物件的位置及高寬面積及達成物件定位等功能。 [OpenCV應用][Python]利用連通域分析達成物件定位 [OpenCV基礎][Python]connectedComponent連通域分析 [OpenCV][Python]印出圖像中OCR面積及位置 這次我們將
本文主要使用pyzbar 與pylibdmtx來讀取條碼,並用靜態方法將這兩個套件的讀碼功能包裝起來,因應不同需求,調用相對應的方法來讀取QR code,一維條碼,Data Matrix。最後再將讀到的條碼資料與框選條碼位子於原圖上。
這次我們使用影像差分處理,用來檢測圖像中的瑕疵。 首先定義瑕疵樣態,以下原圖為例,較淡的可能是錫油的反光,較亮的部分可能是瑕疵或者是刮痕造成,那我們的目的就是檢測出這些瑕疵或者是刮痕。
yield 在影像處理中也是蠻好用的,特別是當你需要處理大量影像或希望逐步處理影像時。它可以用來生成一個影像流,讓你能夠一次處理一張影像而不需要一次性加載所有影像進記憶體。 yield 是 Python 中的一個關鍵字,用於創建生成器(generator)。 生成器是一種特殊類型的迭代器,允許你
透過 Python 的 tracemalloc 模組來比較兩種方法在執行過程中佔用的記憶體大小。以下是兩者的記憶體佔用比較範例。 程式說明 tracemalloc.start():開始追踪記憶體分配。 tracemalloc.get_traced_memory():返回當前和峰值的記憶體使用量
在OpenCV中可以利用 cv2.findContours 判斷物件的形狀,可以通過計算輪廓的某些特徵來實現的。 本文主要利用cv2.arcLength與cv2.approxPolyDP來判斷三角形,正方形,矩形。檢查是否為圓形,則用通過輪廓面積和邊界框面積的比率來判斷。
先前文章有使用連通域分析來印出物件的位置及高寬面積及達成物件定位等功能。 [OpenCV應用][Python]利用連通域分析達成物件定位 [OpenCV基礎][Python]connectedComponent連通域分析 [OpenCV][Python]印出圖像中OCR面積及位置 這次我們將
本文主要使用pyzbar 與pylibdmtx來讀取條碼,並用靜態方法將這兩個套件的讀碼功能包裝起來,因應不同需求,調用相對應的方法來讀取QR code,一維條碼,Data Matrix。最後再將讀到的條碼資料與框選條碼位子於原圖上。
這次我們使用影像差分處理,用來檢測圖像中的瑕疵。 首先定義瑕疵樣態,以下原圖為例,較淡的可能是錫油的反光,較亮的部分可能是瑕疵或者是刮痕造成,那我們的目的就是檢測出這些瑕疵或者是刮痕。
yield 在影像處理中也是蠻好用的,特別是當你需要處理大量影像或希望逐步處理影像時。它可以用來生成一個影像流,讓你能夠一次處理一張影像而不需要一次性加載所有影像進記憶體。 yield 是 Python 中的一個關鍵字,用於創建生成器(generator)。 生成器是一種特殊類型的迭代器,允許你
透過 Python 的 tracemalloc 模組來比較兩種方法在執行過程中佔用的記憶體大小。以下是兩者的記憶體佔用比較範例。 程式說明 tracemalloc.start():開始追踪記憶體分配。 tracemalloc.get_traced_memory():返回當前和峰值的記憶體使用量
你可能也想看
Google News 追蹤
Thumbnail
投資新手大多從身邊市場開始著手,選擇台股市場入門,單筆投資或台股定期定額投資,隨著經驗累積,進入美股市場也是好選擇,這篇文章帶你前進美股投資,證券開戶選擇國內券商複委託,使用美股定期定額投資,並以國泰 CUBE App為例說明。 內容目錄: 1.一站式開戶:以國泰世華 CUBE App 為例
Thumbnail
這是張老師的第三本書,我想前二本應該也有很多朋友們都有讀過,我想絕對是受益良多,而這次在書名上就直接點出,著重在從投資的角度來切入
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在影像處理中,有時候我們只想特別關注某個感興趣的區域時,就是ROI的概念,擷取此範圍的圖像來做處理。 設定超過圖像邊界時就會報錯,本文主要介紹如何擷取影像的同時,避免設定錯誤造成程式崩潰的狀況。 擷取圖像示意圖 ROI程式範例 import cv2 import numpy as np
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
本文將介紹影像的基本操作包括:影像的讀取、顯示、保存,以及一些常見的操作如裁剪、旋轉、縮放等。 語法介紹 讀取影像: cv2.imread函數的參數是影像的檔案路徑。讀取後的影像以NumPy的ndarray形式表示。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
利用OPENCV,實現SIFT應用,尋找圖片中物件的旋轉角度 本文介紹主要提出SIFT提取關鍵角點的座標,由此算出物件的旋轉角度 程式功能介紹 : 導入待檢測圖及樣本圖,則會依照樣本圖中的物件為基準
Thumbnail
[影像處理_OpenCV Python]使用Python撰寫影像處理功能,圖片遮罩或濾除掉不要的地方,旋轉圖片 以下範例將呈現影像處理三種不同的應用: 遮罩的實現 濾除 旋轉
Thumbnail
投資新手大多從身邊市場開始著手,選擇台股市場入門,單筆投資或台股定期定額投資,隨著經驗累積,進入美股市場也是好選擇,這篇文章帶你前進美股投資,證券開戶選擇國內券商複委託,使用美股定期定額投資,並以國泰 CUBE App為例說明。 內容目錄: 1.一站式開戶:以國泰世華 CUBE App 為例
Thumbnail
這是張老師的第三本書,我想前二本應該也有很多朋友們都有讀過,我想絕對是受益良多,而這次在書名上就直接點出,著重在從投資的角度來切入
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在影像處理中,有時候我們只想特別關注某個感興趣的區域時,就是ROI的概念,擷取此範圍的圖像來做處理。 設定超過圖像邊界時就會報錯,本文主要介紹如何擷取影像的同時,避免設定錯誤造成程式崩潰的狀況。 擷取圖像示意圖 ROI程式範例 import cv2 import numpy as np
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
本文將介紹影像的基本操作包括:影像的讀取、顯示、保存,以及一些常見的操作如裁剪、旋轉、縮放等。 語法介紹 讀取影像: cv2.imread函數的參數是影像的檔案路徑。讀取後的影像以NumPy的ndarray形式表示。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
利用OPENCV,實現SIFT應用,尋找圖片中物件的旋轉角度 本文介紹主要提出SIFT提取關鍵角點的座標,由此算出物件的旋轉角度 程式功能介紹 : 導入待檢測圖及樣本圖,則會依照樣本圖中的物件為基準
Thumbnail
[影像處理_OpenCV Python]使用Python撰寫影像處理功能,圖片遮罩或濾除掉不要的地方,旋轉圖片 以下範例將呈現影像處理三種不同的應用: 遮罩的實現 濾除 旋轉