純強化式學習的概念與應用 純強化式學習(Pure Reinforcement Learning, RL)

更新於 發佈於 閱讀時間約 3 分鐘
raw-image

純強化式學習的概念與應用

純強化式學習(Pure Reinforcement Learning, RL)是一種機器學習方法,智能體(agent)通過與環境的互動來學習行為策略,目標是最大化累積獎勵。這種學習方式不依賴於標記數據,而是通過試錯過程來獲得經驗,從而改進其決策能力。


基本原理

在純強化式學習中,智能體在每個時間步驟中根據當前狀態選擇一個行動,然後根據環境的反饋(獎勵或懲罰)來更新其策略。


這一過程可以概括為以下幾個步驟:


探索與利用:

智能體需要在探索新行動和利用已知最佳行動之間取得平衡。


獎勵信號:

每次行動後,智能體會收到一個獎勵信號,這個信號用來評估該行動的好壞。


策略更新:

根據獲得的獎勵,智能體會調整其行動策略,以期在未來的互動中獲得更高的獎勵。


這種方法的優勢在於它能夠在複雜和動態的環境中自我學習,並且不需要大量的標記數據,這使得它在許多實際應用中非常有用,如自動駕駛、遊戲AI和機器人控制等。


DeepSeek-R1的案例


最近,DeepSeek公司推出的DeepSeek-R1模型是純強化式學習的一個重要實例。


該模型不依賴於傳統的監督式微調,而是完全通過強化學習進行訓練,展示了其在推理能力上的潛力。


DeepSeek-R1能夠進行自我反思和推理,這使得它在回答問題時能夠進行更深入的思考,從而提高最終回答的質量。


應用場景

純強化式學習的應用範圍廣泛,包括但不限於:


遊戲AI:例如,AI可以通過不斷嘗試和錯誤來學習如何在遊戲中獲勝。


自動駕駛:智能體可以在模擬環境中學習如何安全駕駛,通過獲得獎勵來優化其駕駛策略。


個性化推薦系統:通過分析用戶的互動,系統可以不斷調整推薦策略,以提高用戶滿意度和參與度.


純強化式學習是一種強大的學習方法,能夠在多變的環境中自我學習和適應,並且在許多領域中展現出巨大的潛力。

留言
avatar-img
留言分享你的想法!
avatar-img
AI.ESG.數位轉型顧問 沈重宗
21會員
427內容數
2025/04/29
🚀【數位廣告大變革】AI搜尋優化(AEO)成新戰場!品牌如何搶攻「意向經濟」商機?💰 🔍 一、技術革命:從SEO到AEO的關鍵轉型 1. AEO(AI搜尋優化)強勢崛起 AI聊天機器人(如ChatGPT、DeepSeek)成為網友找答案的首選,傳統SEO必須升級為
Thumbnail
2025/04/29
🚀【數位廣告大變革】AI搜尋優化(AEO)成新戰場!品牌如何搶攻「意向經濟」商機?💰 🔍 一、技術革命:從SEO到AEO的關鍵轉型 1. AEO(AI搜尋優化)強勢崛起 AI聊天機器人(如ChatGPT、DeepSeek)成為網友找答案的首選,傳統SEO必須升級為
Thumbnail
2025/04/28
🔥 Meta 2025年最新動態:FB大掃除假帳號、強化內容管理,用戶體驗再升級! 🚀 --- 一、假帳號與垃圾內容全面開戰! 💥 1️⃣ 假帳號殺很大! - 2024年已砍掉 超過1億個「用機器人衝粉絲」的假專頁 🚫🤖,外加 2300萬個「盜用
Thumbnail
2025/04/28
🔥 Meta 2025年最新動態:FB大掃除假帳號、強化內容管理,用戶體驗再升級! 🚀 --- 一、假帳號與垃圾內容全面開戰! 💥 1️⃣ 假帳號殺很大! - 2024年已砍掉 超過1億個「用機器人衝粉絲」的假專頁 🚫🤖,外加 2300萬個「盜用
Thumbnail
2025/04/27
🔥【30天速成秘笈】靠「這招」無經驗拿下AI高薪offer!連拍片、寫文案都超快上手💯 💡「在UC Berkeley學到最猛的不是專業知識,而是『如何用AI快速吞掉一個領域』!」 👇以下是我用「深度學習」為例的實戰步驟(換成Python、行銷分析、自媒體都適用):
Thumbnail
2025/04/27
🔥【30天速成秘笈】靠「這招」無經驗拿下AI高薪offer!連拍片、寫文案都超快上手💯 💡「在UC Berkeley學到最猛的不是專業知識,而是『如何用AI快速吞掉一個領域』!」 👇以下是我用「深度學習」為例的實戰步驟(換成Python、行銷分析、自媒體都適用):
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
本文探討機器學習的基本原理及其應用目的。機器學習的基本原理包括數據預處理、模型選擇、訓練、評估和持續學習,以及特徵工程和超參數調優。機器學習可用於預測、分類、聚類、異常檢測等多種目的,應用範圍涵蓋金融、醫療、電商等領域。
Thumbnail
本文探討機器學習的基本原理及其應用目的。機器學習的基本原理包括數據預處理、模型選擇、訓練、評估和持續學習,以及特徵工程和超參數調優。機器學習可用於預測、分類、聚類、異常檢測等多種目的,應用範圍涵蓋金融、醫療、電商等領域。
Thumbnail
Reinforcement Learning (強化學習) 的理論非常有趣,可能是因為其中許多方法,與人類的學習歷程極為相似,如試錯,獎懲,改進策略,持續優化等等。現在準備來爬這座山了,我把學習階段大致分成三個小山峰,依序為 Q-Learning --> DQN --> Actor-Critic,
Thumbnail
Reinforcement Learning (強化學習) 的理論非常有趣,可能是因為其中許多方法,與人類的學習歷程極為相似,如試錯,獎懲,改進策略,持續優化等等。現在準備來爬這座山了,我把學習階段大致分成三個小山峰,依序為 Q-Learning --> DQN --> Actor-Critic,
Thumbnail
你有沒有想過,AI 學習的方法,其實可以用來改善我們的學習與成長? 本文探討AI學習機制如何應用於個人成長,並從結果、方法、動機、回饋四個面向,闡述如何藉由設定明確目標、建立回饋機制及靈活調整學習方法,來持續提升自我。
Thumbnail
你有沒有想過,AI 學習的方法,其實可以用來改善我們的學習與成長? 本文探討AI學習機制如何應用於個人成長,並從結果、方法、動機、回饋四個面向,闡述如何藉由設定明確目標、建立回饋機制及靈活調整學習方法,來持續提升自我。
Thumbnail
純強化式學習的概念與應用 純強化式學習(Pure Reinforcement Learning, RL)是一種機器學習方法,智能體(agent)通過與環境的互動來學習行為策略,目標是最大化累積獎勵。這種學習方式不依賴於標記數據,而是通過試錯過程來獲得經驗,從而改進其決策能力。 基本原理 在
Thumbnail
純強化式學習的概念與應用 純強化式學習(Pure Reinforcement Learning, RL)是一種機器學習方法,智能體(agent)通過與環境的互動來學習行為策略,目標是最大化累積獎勵。這種學習方式不依賴於標記數據,而是通過試錯過程來獲得經驗,從而改進其決策能力。 基本原理 在
Thumbnail
這篇文章提供機器學習和人工智慧的基礎概念,包含監督式學習、非監督式學習、強化學習,以及模型訓練、優化和評估等重要環節。文中也涵蓋了特徵工程、特徵縮放、維度詛咒等關鍵概念,並簡要介紹了正規化、K折交叉驗證等進階技術。
Thumbnail
這篇文章提供機器學習和人工智慧的基礎概念,包含監督式學習、非監督式學習、強化學習,以及模型訓練、優化和評估等重要環節。文中也涵蓋了特徵工程、特徵縮放、維度詛咒等關鍵概念,並簡要介紹了正規化、K折交叉驗證等進階技術。
Thumbnail
隨著人工智慧的快速發展,機器學習、深度學習和強化學習成為重要的研究主題。本文將探討這三者之間的區別與聯繫,包括定義、特點及其應用場景。機器學習作為基礎技術,深度學習利用多層神經網絡,強化學習則通過試錯逐步優化決策。本研究還將分析它們各自的優勢、挑戰及未來發展前景。
Thumbnail
隨著人工智慧的快速發展,機器學習、深度學習和強化學習成為重要的研究主題。本文將探討這三者之間的區別與聯繫,包括定義、特點及其應用場景。機器學習作為基礎技術,深度學習利用多層神經網絡,強化學習則通過試錯逐步優化決策。本研究還將分析它們各自的優勢、挑戰及未來發展前景。
Thumbnail
這學期修了門機器學習原理,想知道AI最近在夯什麼。老師在講學習的型態時,介紹了一個有趣的型態:reinforcement learning,又稱為強化學習。 這個學習模式應用在有名的電腦圍棋,Aphago訓練,以及Chat gpt 早期的訓練。reinforcement learning很有趣的地
Thumbnail
這學期修了門機器學習原理,想知道AI最近在夯什麼。老師在講學習的型態時,介紹了一個有趣的型態:reinforcement learning,又稱為強化學習。 這個學習模式應用在有名的電腦圍棋,Aphago訓練,以及Chat gpt 早期的訓練。reinforcement learning很有趣的地
Thumbnail
人們透過機器學習(machine learning),試著讓電腦能夠從大量資料中學習成長,不僅可以運用在生活各方面的功能提升,甚至還能透過這些既有的資料,起到鑑往知來的效果,處在當今資訊爆炸的時代,正是你開始學機器學習的最好時機!
Thumbnail
人們透過機器學習(machine learning),試著讓電腦能夠從大量資料中學習成長,不僅可以運用在生活各方面的功能提升,甚至還能透過這些既有的資料,起到鑑往知來的效果,處在當今資訊爆炸的時代,正是你開始學機器學習的最好時機!
Thumbnail
為什麼管理機器學習(ML)產品比一般軟體困難?因為開發ML產品的不確定性和可變性更高;而一般軟體工程則是為機器編寫規則,原本就有高度的確定性。而ML系統可以自行學習,所以並不需要人來編寫規則。總之,「實驗」就是開發ML產品的關鍵。
Thumbnail
為什麼管理機器學習(ML)產品比一般軟體困難?因為開發ML產品的不確定性和可變性更高;而一般軟體工程則是為機器編寫規則,原本就有高度的確定性。而ML系統可以自行學習,所以並不需要人來編寫規則。總之,「實驗」就是開發ML產品的關鍵。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News