付費限定

大學數位邏輯講義課程系列-半減器與全減器

更新 發佈閱讀 1 分鐘

半減器

首先定義輸入與輸出變數的名稱與關係:

以行動支持創作者!付費即可解鎖
本篇內容共 281 字、0 則留言,僅發佈於電子系專業課程入門你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
電資鼠 - 您的學習好夥伴
15會員
242內容數
在當今數位時代,電資領域人才需求爆發式成長,不論是前端網頁設計、嵌入式開發、人工智慧、物聯網還是軟硬體整合,這些技術都在改變世界。而掌握 C/C++、Python、數位邏輯、電路學與嵌入式開發等大學電資領域的課程,正是進入這個高薪、高需求產業的關鍵!
2025/04/30
接續上回,本章節的目的為使用 JK 正反器來設計出下面狀態圖的電路結構(建議先看完上一章節的逐步推導解說會比較好理解本章節的內容喔~)。
Thumbnail
2025/04/30
接續上回,本章節的目的為使用 JK 正反器來設計出下面狀態圖的電路結構(建議先看完上一章節的逐步推導解說會比較好理解本章節的內容喔~)。
Thumbnail
2025/04/30
我們知道要設計一電路需要知道規格之定義,然後我們藉由構建狀態圖,就可以開始準備設計電路,本章節從 D正反器開始,完整詳述狀態機電路設計的過程,幫助讀者輕鬆入門複雜觀念,為未來更深入的研究打下堅實基礎。
Thumbnail
2025/04/30
我們知道要設計一電路需要知道規格之定義,然後我們藉由構建狀態圖,就可以開始準備設計電路,本章節從 D正反器開始,完整詳述狀態機電路設計的過程,幫助讀者輕鬆入門複雜觀念,為未來更深入的研究打下堅實基礎。
Thumbnail
2025/04/30
這篇文章探討了莫爾機和米利機的狀態圖、狀態表建立、化簡以及狀態編碼等議題。文中詳細說明瞭狀態圖的組成元素、狀態轉換的規則,以及如何將狀態圖轉換為狀態表。此外,文章也闡述了狀態化簡的方法,以減少邏輯閘和正反器的數量,降低電路成本。最後,文章說明瞭如何為狀態分配唯一的二進位編碼值,以方便電路設計。
Thumbnail
2025/04/30
這篇文章探討了莫爾機和米利機的狀態圖、狀態表建立、化簡以及狀態編碼等議題。文中詳細說明瞭狀態圖的組成元素、狀態轉換的規則,以及如何將狀態圖轉換為狀態表。此外,文章也闡述了狀態化簡的方法,以減少邏輯閘和正反器的數量,降低電路成本。最後,文章說明瞭如何為狀態分配唯一的二進位編碼值,以方便電路設計。
Thumbnail
看更多
你可能也想看
Thumbnail
本章節將介紹數位邏輯中用於實現二進位減法運算的基本單元:半減器(Half Subtractor)與全減器(Full Subtractor)。這些電路與加法器相對應,負責進行位元級的減法運算。 透過本章的學習,你將能從真值表、邏輯式一路推導至電路實作,掌握減法邏輯的設計方法與思考框架。
Thumbnail
本章節將介紹數位邏輯中用於實現二進位減法運算的基本單元:半減器(Half Subtractor)與全減器(Full Subtractor)。這些電路與加法器相對應,負責進行位元級的減法運算。 透過本章的學習,你將能從真值表、邏輯式一路推導至電路實作,掌握減法邏輯的設計方法與思考框架。
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 一 函數概念的發展不可能終結,踏入公元廿一世紀,數學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 1.2.6熱的傳導 二 傅立葉認為他的結果對任一函數皆有效,並將函數定義為 (FF) 在一般情況下,函數
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 一 偏微分方程始於公元十八世紀,在十九世紀茁長壯大。 隨著物理科學擴展越深 (理
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 八 在關於振動弦通解的這場論爭之中,函數概念默默地向兩個方面推前了一大步。 一方面,特朗貝爾和歐拉等擴大了
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5弦的振動 八 在關於振動弦通解的這場論爭之中,函數概念默默地向兩個方面推前了一大步。 一方面,特朗貝爾和歐拉等擴大了
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 三 1755年,歐拉改變了主意,在《微分學原理》(Institutiones calculi differen
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News