舊業重溫8--求平方根近似值的簡便方法

更新於 發佈於 閱讀時間約 3 分鐘
[陳傳義]拍攝

[陳傳義]拍攝

國中數學第三冊開始學根號√,把一個正數x放進裡面,代表x的正平方根,也就是平方以後剛好等於x的正數。這裡的x一般都從正整數開始學起,當x恰好是完全平方數(可等於某一正整數的平方),例如1、4、9、16、25等, √x會等於正整數;否則不但不等於任何整數,也不能等於任何兩個正整數的比值(數學家把這樣的數稱為「無理數」),如果想表達成小數,那得寫上無窮多位小數,還不會循環,例如

raw-image

等等。如果讓你在根號內隨機寫上一個正整數,得到無理數的機會或許更大。

但人類社會日常生活中,不論是買賣交易、工程建設、政府統計、各種資料登錄、以及諸多風險評估,皆使用有理數(可等於某兩個正整數的比值)。當遇上無理數時,就要找一個足夠接近的有理數來取代,我們稱之為「近似值」。國中課程有求近似值的方法,包括十分逼近法、查表法和按電子計算器。

在YT上看過幾則油挑伯(YouTuber)教簡便求平方根近似值公式的影片,不過都未解釋道理。本文就來逐一探討方法、理由和優化(縮小誤差)。

方法:

如何求√x?

步驟1:找到一個正整數a,滿足a2 < x < (a+1) 2

步驟2:計算 x - a2 = b

步驟3: √x≒ a + b/(2×a)

茲以√2為例,即x=2, 因為 12=1 < 2 < 22=4, 取 a=1, 則 b= 2-12 = 1,

得√2≒1+ 1/(2×1) = 3/2 = 1.5

其實,如果(a+1)2 更靠近x,步驟2與步驟3裡的a可以換成(a+1),誤差將更小。

再以√15為例,即x=15, 因為 32=9 < 15 < 42=16, 發現16更靠近15,那麼,

raw-image

理由:

當a2 < x < (a+1) 2 ,就有 a < √x < a+1, √x比a多那麼一點點,

假設√x=a+y, 其中 0<y<1,

∵ x = (√x) 2 

∴ x = (a+y) 2 = a2 + 2ay + y2 (),   因為 y是小於1的正數,平方後更小,    

     ≒ a2 + 2ay ,               忽略後相差無幾

移項後, y≒ (x - a2 )/(2a) = b/(2a)。

因此我們相信b/(2a)可以作為y的估計值,差距微小。

優化:

其實這個辦法所求得的近似值,一定會高估,也就是比實際值大。

我們看上述的討論,

x = a2 + 2ay + y2 > a2 + 2ay        ∵ y2是正數,少加了就變小。

經過移項,推得 y< (x - a2 )/(2a) = b/(2a)

所以 √x=a+y < a+b/(2a)          (對於把a換成(a+1)的情形亦然。)

另外,忽略y2 就是造成誤差的原因,所以如果y越接近0,誤差就會越小。而b/(2a)既然近似於y,同樣地, b/(2a)越接近0,誤差越小,本方法會得到越接近真值的結果。

上文計算√2, b/(2a) = 1/2。如果嫌誤差太大,以下提供兩個縮小的妙招:

其一

把先前算出的近似值1.5當作a, 再算一遍,

b= 2–(1.5) 2 = –0.25

得√2≒ 1.5 – 0.25/3 = 4.25/3 = 1.4166…

其二

國中學根式運算時,知道

raw-image

這個根號前的5倍,可以換作其他適當的整倍數,能使計算出來的b/(2a)越接近0越好。

raw-image

以下提供練習題,供手癢者玩玩,利用本公式求出有理數近似值:

(1) √37≒

(2) √287≒

raw-image

:有關平方展開公式,歡迎參閱拙作<舊業重溫5--又連乘又開根號,超大數求平方根問題>

avatar-img
傳義(R_Z_)的沙龍
17會員
142內容數
留言
avatar-img
留言分享你的想法!
傳義(R_Z_)的沙龍 的其他內容
據說這是哈佛大學的考題,吸引幾個油挑伯(YouTuber)製作解題影片,妙的是解法都用一樣的巧招,這留待後面來談。 先解釋一下,本題不是求近似值,用手機上的計算器或找谷歌幫忙,會得到近似值答覆,不滿足要求。所謂化簡,是指計算成a+b√2形式,其中a與b是整數,可能正也可能負。
在四五十年以前的遙遠年代,中學的數學課有教解無理方程式--就是像這種未知數藏在根號內的方程式,現在則為了減輕學生負擔,已經廢棄了。不過,對於好學敏求的人,其實並不難學習,只要能化為多項方程式,接下來就是現行課綱所教的了。對於有根號的無理方程式,應如何化為多項方程式?
看起來,即使不是競試題,也像是培養競試選手的練習題,因為數字是嚇死人的大。當然如果允許使用計算器,那比的是操作計算器的技能,不是考數學,就沒意思了。目前中小學考試通常尚未開放使用,還得靠手、腦、筆、紙,但真要硬把4個四位數乘起來,結果是一個14位數,再來個開根號,可不是尋常學生能辦到的,估計要困住
據說這是哈佛大學的考題,吸引幾個油挑伯(YouTuber)製作解題影片,妙的是解法都用一樣的巧招,這留待後面來談。 先解釋一下,本題不是求近似值,用手機上的計算器或找谷歌幫忙,會得到近似值答覆,不滿足要求。所謂化簡,是指計算成a+b√2形式,其中a與b是整數,可能正也可能負。
在四五十年以前的遙遠年代,中學的數學課有教解無理方程式--就是像這種未知數藏在根號內的方程式,現在則為了減輕學生負擔,已經廢棄了。不過,對於好學敏求的人,其實並不難學習,只要能化為多項方程式,接下來就是現行課綱所教的了。對於有根號的無理方程式,應如何化為多項方程式?
看起來,即使不是競試題,也像是培養競試選手的練習題,因為數字是嚇死人的大。當然如果允許使用計算器,那比的是操作計算器的技能,不是考數學,就沒意思了。目前中小學考試通常尚未開放使用,還得靠手、腦、筆、紙,但真要硬把4個四位數乘起來,結果是一個14位數,再來個開根號,可不是尋常學生能辦到的,估計要困住
你可能也想看
Google News 追蹤
Thumbnail
【vocus 精選投資理財/金融類沙龍,輸入 "moneyback" 年訂閱 9 折】 市場動盪時,加碼永遠值得的投資標的——「自己」 川普政府再度拋出關稅震撼彈,全球市場應聲重挫,從散戶到專業投資人,都急著找尋買進殺出的訊號,就是現在,輪到知識進場!把握時機讓自己升級,別放過反彈的機會!
Thumbnail
【vocus 精選投資理財/金融類沙龍,輸入 "moneyback" 年訂閱 9 折】 市場動盪時,加碼永遠值得的投資標的——「自己」 川普政府再度拋出關稅震撼彈,全球市場應聲重挫,從散戶到專業投資人,都急著找尋買進殺出的訊號,就是現在,輪到知識進場!把握時機讓自己升級,別放過反彈的機會!