舊業重溫6--有雙重根號的方程式

更新 發佈閱讀 3 分鐘

在YouTube上看到一位外國老師解一道有雙重根號的方程式,題目如下:

raw-image

在四五十年以前的遙遠年代,中學的數學課有教解無理方程式--就是像這種未知數藏在根號內的方程式,現在則為了減輕學生負擔,已經廢棄了。不過,對於好學敏求的人,其實並不難學習,只要能化為多項方程式,接下來就是現行課綱所教的了。對於有根號的無理方程式,應如何化為多項方程式?基本技巧就在於「平方消根號」。且看以下解法:

解法一

將等式兩邊同時平方

raw-image

外層根號與平方抵消,變成

raw-image

再兩邊平方一次,就可以消去剩下的根號嗎?很遺憾,依完全平方乘法公式(可參閱<舊業重溫5>),左式變成

raw-image

根號還在。欲徹底消除根號,須先將根號外的加減項,移到等號另一側:

raw-image

再兩邊平方,記得根號外的2也要依指數律一起平方,

raw-image

終於完成轉化為多項式的手續。接下來,

   4.(15x-41) = 492 - 2.49.(15x) + (15x)2   (右式依完全平方乘法公式展開)

乘出結果, 60x – 164 = 2401 – 1470x + 225x2

移項,合併,可整理為   225x2 – 1530x + 2565 = 0

係數很大,別嚇著了,它們有最大公因數45,先除去,化簡為

   5x2 – 34X + 57 = 0

依國中所教的十字交乘法,將左式分解,得

   (x -3)(5x -19)=0

  ∴ x=3 或 x= 19/5

到這裡還不能寫下答案,因為前面將等式兩邊平方時,可能發生「增根」現象,多出一些不合理的根,我們須進行驗算,代入初始的方程式,將不滿足的解捨棄。

當x=3時,

raw-image

當x= 19/5時,

raw-image

所以本題只有一解 x=3


不過這位Ytr並不如此推求,他耍了一個好用的技巧,可使演算過程簡單一點,減少一些項,或者使係數變小,不像上述過程跑出4位數來。這個技巧也值得學起來,大家看仔細了。

解法二:

用新變數代換內層的根式,令

raw-image

仿效解法一,等號兩邊平方,消根號化為變數t的多項方程式,

   t2 + 41+ 2t = 72

   t2+ 2t + 41 – 49 = 0

   t2+ 2t – 8 = 0,

十字交乘分解,(t-2)(t+4)=0,

   得 t=2 或 -4, 即

raw-image

15x – 41 = 4
  15x = 4+41 = 45
  x = 45/15 = 3,驗算滿足方程式。

raw-image

15x – 41 = (-4)2 = 16
  15x = 16+41 = 57
  x = 57/15 = 19/5,驗算不合(如前述)。

[陳傳義]拍攝

[陳傳義]拍攝




留言
avatar-img
傳義(R_Z_)的沙龍
20會員
163內容數
傳義(R_Z_)的沙龍的其他內容
2025/04/21
國中數學第三冊開始學根號√,把一個正數x放進裡面,代表x的正平方根,也就是平方以後剛好等於x的正數。這裡的x一般都從正整數開始學起,當x恰好是完全平方數(可等於某一正整數的平方),例如1、4、9、16、25等, √x會等於正整數;否則不但不等於任何整數,也不能等於任何兩個正整數的比值(數學家把這樣的
Thumbnail
2025/04/21
國中數學第三冊開始學根號√,把一個正數x放進裡面,代表x的正平方根,也就是平方以後剛好等於x的正數。這裡的x一般都從正整數開始學起,當x恰好是完全平方數(可等於某一正整數的平方),例如1、4、9、16、25等, √x會等於正整數;否則不但不等於任何整數,也不能等於任何兩個正整數的比值(數學家把這樣的
Thumbnail
2025/02/25
據說這是哈佛大學的考題,吸引幾個油挑伯(YouTuber)製作解題影片,妙的是解法都用一樣的巧招,這留待後面來談。 先解釋一下,本題不是求近似值,用手機上的計算器或找谷歌幫忙,會得到近似值答覆,不滿足要求。所謂化簡,是指計算成a+b√2形式,其中a與b是整數,可能正也可能負。
Thumbnail
2025/02/25
據說這是哈佛大學的考題,吸引幾個油挑伯(YouTuber)製作解題影片,妙的是解法都用一樣的巧招,這留待後面來談。 先解釋一下,本題不是求近似值,用手機上的計算器或找谷歌幫忙,會得到近似值答覆,不滿足要求。所謂化簡,是指計算成a+b√2形式,其中a與b是整數,可能正也可能負。
Thumbnail
2025/01/12
看起來,即使不是競試題,也像是培養競試選手的練習題,因為數字是嚇死人的大。當然如果允許使用計算器,那比的是操作計算器的技能,不是考數學,就沒意思了。目前中小學考試通常尚未開放使用,還得靠手、腦、筆、紙,但真要硬把4個四位數乘起來,結果是一個14位數,再來個開根號,可不是尋常學生能辦到的,估計要困住
Thumbnail
2025/01/12
看起來,即使不是競試題,也像是培養競試選手的練習題,因為數字是嚇死人的大。當然如果允許使用計算器,那比的是操作計算器的技能,不是考數學,就沒意思了。目前中小學考試通常尚未開放使用,還得靠手、腦、筆、紙,但真要硬把4個四位數乘起來,結果是一個14位數,再來個開根號,可不是尋常學生能辦到的,估計要困住
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
 1.本文提供的三種解法,似乎後兩種在計算上比較輕鬆,但其實計算的難易可能因題目給的數字或條件不同,而有差異,不能一概而論。譬如,當一元二次方程式的兩根是整數,那用解法1最簡單,何須大費周章?  2.題(2)求立方和,解法3要利用計算平方和的結果,而解法2則不必,所以題目如果不要學生算平方和,
Thumbnail
 1.本文提供的三種解法,似乎後兩種在計算上比較輕鬆,但其實計算的難易可能因題目給的數字或條件不同,而有差異,不能一概而論。譬如,當一元二次方程式的兩根是整數,那用解法1最簡單,何須大費周章?  2.題(2)求立方和,解法3要利用計算平方和的結果,而解法2則不必,所以題目如果不要學生算平方和,
Thumbnail
最後的統計機率,以及立體圖形,這大概是國中感到最輕鬆的章節。話是這麼說,因為學生到此通常都煮熟了,要死要活都定案,才感到沒差。筆者在這裡,只會針對一些常見的錯誤釐清,其他就不多說,國三這邊真的只是蜻蜓點水。圖形那邊則稍微提一下,立體概念照理說都有,還沒有的硬補也不行,不如回去先看小學高年級課程。
Thumbnail
最後的統計機率,以及立體圖形,這大概是國中感到最輕鬆的章節。話是這麼說,因為學生到此通常都煮熟了,要死要活都定案,才感到沒差。筆者在這裡,只會針對一些常見的錯誤釐清,其他就不多說,國三這邊真的只是蜻蜓點水。圖形那邊則稍微提一下,立體概念照理說都有,還沒有的硬補也不行,不如回去先看小學高年級課程。
Thumbnail
接著,筆者會教頂點怎麼求,也就是二次函數的整理,一開始「絕對不會直接用代數上課」,筆者一律用實際題目去講解,絕對不教y=ax^2+bx+c,理由相信大家都懂,對中上程度以下的人來說,多一個未知數都要花時間了,更何況全部都是代數。
Thumbnail
接著,筆者會教頂點怎麼求,也就是二次函數的整理,一開始「絕對不會直接用代數上課」,筆者一律用實際題目去講解,絕對不教y=ax^2+bx+c,理由相信大家都懂,對中上程度以下的人來說,多一個未知數都要花時間了,更何況全部都是代數。
Thumbnail
國三下數學,快解脫了同學們。下學期數學重點,嚴格說只有二次函數,後面是統計與機率、立體圖形,筆者應該會分兩部分,二次函數跟其他。因為二次函數的問題較多,統計與機率大致上還好,立體圖形也是,因為都接近會考,故以會考的角度來說,題目不會出太難,頂多一題,從投報率來說也不建議花太多功夫。 二次函數嚴格說
Thumbnail
國三下數學,快解脫了同學們。下學期數學重點,嚴格說只有二次函數,後面是統計與機率、立體圖形,筆者應該會分兩部分,二次函數跟其他。因為二次函數的問題較多,統計與機率大致上還好,立體圖形也是,因為都接近會考,故以會考的角度來說,題目不會出太難,頂多一題,從投報率來說也不建議花太多功夫。 二次函數嚴格說
Thumbnail
不管怎樣,基礎的東西是不會變的,覺得整天說練題目很煩,有沒快點的速成法,筆者只能說「沒這回事」。要快速度過這關是可以,只是下一關更難過,一次函數沒熟練,二次函數真的就甭談,上高中直接倒給你看。「我看不懂這題怎麼解。」
Thumbnail
不管怎樣,基礎的東西是不會變的,覺得整天說練題目很煩,有沒快點的速成法,筆者只能說「沒這回事」。要快速度過這關是可以,只是下一關更難過,一次函數沒熟練,二次函數真的就甭談,上高中直接倒給你看。「我看不懂這題怎麼解。」
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
但就筆者個人經驗,數學在二下像自然一樣爆掉的狀況反倒少見,應該是二上已經被洗禮過,該炸的都炸了,剩下的是持續,以及慢慢習慣步調追上的差別。前半的第一部分是數列,目前只剩下等差數列,等比只有講一點概念,複雜運算都沒有了。筆者看過的學生在這邊出事的,大多是題型看太少,導致卡住抓不到解題辦法。
Thumbnail
但就筆者個人經驗,數學在二下像自然一樣爆掉的狀況反倒少見,應該是二上已經被洗禮過,該炸的都炸了,剩下的是持續,以及慢慢習慣步調追上的差別。前半的第一部分是數列,目前只剩下等差數列,等比只有講一點概念,複雜運算都沒有了。筆者看過的學生在這邊出事的,大多是題型看太少,導致卡住抓不到解題辦法。
Thumbnail
恭喜各位同學進入國中二年級,或者說要恭喜家長,小孩終於進入正規課程了。就跟高一會有銜接課程,大學也有一樣,國一課程基本上也算是有很強烈的銜接意味,但也有不少打底的意思。這也代表,各種綜合運用的技術會在國二的課程中出現。
Thumbnail
恭喜各位同學進入國中二年級,或者說要恭喜家長,小孩終於進入正規課程了。就跟高一會有銜接課程,大學也有一樣,國一課程基本上也算是有很強烈的銜接意味,但也有不少打底的意思。這也代表,各種綜合運用的技術會在國二的課程中出現。
Thumbnail
家長真的要記得,小學數學多半脫離不了算術的範疇,但進入數學就有數學語言的概念,無法運用數學語言,怎麼可能進入科學、工程的領域?就算勉強考進去,多半也只會是半調子。 能夠早點熟悉數學邏輯的思考,以及數學語言的運用,絕對是好事。
Thumbnail
家長真的要記得,小學數學多半脫離不了算術的範疇,但進入數學就有數學語言的概念,無法運用數學語言,怎麼可能進入科學、工程的領域?就算勉強考進去,多半也只會是半調子。 能夠早點熟悉數學邏輯的思考,以及數學語言的運用,絕對是好事。
Thumbnail
數學在五年級另外的項目,比較瑣碎又需要重視的,筆者認為有兩個:1.用符號代表數(就是未知數的概念) 2. 單位的的了解。未知數就是未來國中方程式的基礎,筆者親身經歷到的困境是,國一上來的新生,對於未知數沒有概念。你會覺得怎麼可能,小學不是教過了?
Thumbnail
數學在五年級另外的項目,比較瑣碎又需要重視的,筆者認為有兩個:1.用符號代表數(就是未知數的概念) 2. 單位的的了解。未知數就是未來國中方程式的基礎,筆者親身經歷到的困境是,國一上來的新生,對於未知數沒有概念。你會覺得怎麼可能,小學不是教過了?
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News