Positional Encoding

更新 發佈閱讀 2 分鐘

Positional Encoding 是深度學習中 Transformer 模型用來表示序列中各個元素(例如詞語)位置的技術。由於 Transformer 自身的自注意力機制(self-attention)在處理序列時會把輸入視為一個集合,缺乏對元素順序的內建感知,因此需要注入位置信息讓模型能理解序列中詞語的排列順序。

主要概念

目的:將每個詞的「位置信息」與其詞嵌入(embedding)結合,讓模型知道詞語在序列中的具體位置。

實現方法:通常使用一組基於正弦與餘弦函數的周期性數學函數,為序列中每一個位置產生一個唯一且可微的向量表示。

計算公式(部分維度使用正弦波,另一部分使用餘弦波,頻率隨維度變化):

其中 是位置序號, 是維度索引, 是嵌入維度。

融合:將位置編碼向量與詞嵌入向量相加,作為 Transformer 輸入。

為什麼選用正弦餘弦?

產生平滑且獨特的波形,有利於模型學習序列中元素的相對與絕對位置關係。

支援不同序列長度的泛化,不必為固定序列長度訓練新編碼。

簡單比喻

想像每個詞除了有自己的「意義座標」外,還有一個「時間戳」告訴模型詞出現在句子的哪個位置,這個時間戳就是透過正弦餘弦方式產生的位置信號。

總結:

Positional Encoding 是 Transformer 類模型中用來注入序列元素位置信息的機制,確保模型對詞序有感知能力,從而更好理解和生成自然語言。

留言
avatar-img
留言分享你的想法!
avatar-img
郝信華 iPAS AI應用規劃師 學習筆記
27會員
495內容數
現職 : 富邦建設資訊副理 證照:經濟部 iPAS AI應用規劃師 AWS Certified AI Practitioner (AIF-C01)
2025/08/18
AI alignment(人工智慧對齊)是一個研究領域,目標是確保人工智慧系統的行為和結果符合人類的意圖、價值觀和目標。換句話說,就是讓 AI 的行動方向與人類設計者或使用者真正想要達成的目標保持一致,避免 AI 產生不符合預期甚至危害性的行為。 為什麼 AI alignment 重要? •
2025/08/18
AI alignment(人工智慧對齊)是一個研究領域,目標是確保人工智慧系統的行為和結果符合人類的意圖、價值觀和目標。換句話說,就是讓 AI 的行動方向與人類設計者或使用者真正想要達成的目標保持一致,避免 AI 產生不符合預期甚至危害性的行為。 為什麼 AI alignment 重要? •
2025/08/18
Instruction fine-tuning 是指對預訓練模型(例如 Stable Diffusion)進行微調,使模型能更好地理解並執行用戶的「指令」(instruction),即根據特定的描述或操作說明來生成對應的結果。 具體解釋: • 傳統微調會針對特定任務或數據進行調整,但指令微調則
2025/08/18
Instruction fine-tuning 是指對預訓練模型(例如 Stable Diffusion)進行微調,使模型能更好地理解並執行用戶的「指令」(instruction),即根據特定的描述或操作說明來生成對應的結果。 具體解釋: • 傳統微調會針對特定任務或數據進行調整,但指令微調則
2025/08/18
Stable Diffusion 是一個基於潛在擴散模型(Latent Diffusion Model, LDM)的文字到影像的生成模型,它能從文字描述自動生成高品質、高解析度的圖像。這個模型由 CompVis 團隊與 Stability AI 等合作開發,並基於 LAION 大型開源圖像語言對齊數
2025/08/18
Stable Diffusion 是一個基於潛在擴散模型(Latent Diffusion Model, LDM)的文字到影像的生成模型,它能從文字描述自動生成高品質、高解析度的圖像。這個模型由 CompVis 團隊與 Stability AI 等合作開發,並基於 LAION 大型開源圖像語言對齊數
看更多
你可能也想看
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
資料前處理(Data Preprocessing)中的重要角色-缺失值處理。從檢查、刪除到填充缺失值,以及插值法和機器學習算法的應用方法。Pandas 缺失值處理基礎方法、進階填充缺失值、鐵達尼號存活預測資料集的示例和機器學習算法填補缺失值方法的介紹與使用。
Thumbnail
資料前處理(Data Preprocessing)中的重要角色-缺失值處理。從檢查、刪除到填充缺失值,以及插值法和機器學習算法的應用方法。Pandas 缺失值處理基礎方法、進階填充缺失值、鐵達尼號存活預測資料集的示例和機器學習算法填補缺失值方法的介紹與使用。
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
本文將延續上一篇文章,經由訓練好的VAE模型其中的解碼器,來生成圖片。 [深度學習]訓練VAE模型用於生成圖片_訓練篇 輸入產生的隨機雜訊,輸入VAE的解碼器後,生成的圖片
Thumbnail
本文將延續上一篇文章,經由訓練好的VAE模型其中的解碼器,來生成圖片。 [深度學習]訓練VAE模型用於生成圖片_訓練篇 輸入產生的隨機雜訊,輸入VAE的解碼器後,生成的圖片
Thumbnail
本文主要介紹,如何利用VAE變分自編碼器來訓練生成圖片。 訓練集資料將採用TF影像資料庫中的fashion_mnist VAE變分自編碼器簡單介紹 •VAE(Variational Auto-Encoder)中文名稱變分自編碼器,主要是一種將原始資料編碼到潛在向量空間,再編碼回來的神經網路。
Thumbnail
本文主要介紹,如何利用VAE變分自編碼器來訓練生成圖片。 訓練集資料將採用TF影像資料庫中的fashion_mnist VAE變分自編碼器簡單介紹 •VAE(Variational Auto-Encoder)中文名稱變分自編碼器,主要是一種將原始資料編碼到潛在向量空間,再編碼回來的神經網路。
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News