【邁向圖神經網絡GNN】Part1:圖數據的基本元素與應用

更新於 發佈於 閱讀時間約 1 分鐘
raw-image

GNN發展背景

傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,但其靈活性和複雜性遠超過一般的圖像數據。因此,為了有效處理這類複雜的圖形數據,圖神經網絡(GNN)應運而生。

圖(Graph)的基本定義

圖是由以下三個基本元素構成的數據結構:

  • 節點(Node):也稱為端點,代表單個數據實體,如化合物中的原子或社交網絡中的個人。節點儲存有關其本身的屬性信息。
  • 邊(Edge):也稱為連結,描述節點間的關係,如化合物中的化學鍵或社交關係中的友誼連結。邊可以具有方向性,並可能帶有權重。
  • 全局(Global):描述整個圖的通用屬性,如化合物的總體性質或社交網絡的類型。在某些模型中,可能會有一個稱為主節點(master node)的特殊節點來代表整個圖。

GNN可解決的問題類型

  1. 圖層級任務(Graph-level Task):處理整個圖的屬性,例如預測一種化合物是否具毒性或某社交網絡的屬性。
  2. 節點層級任務(Node-level Task):針對單個節點的屬性進行分析,如確定社交網絡中某人的社交圈層。
  3. 邊層級任務(Edge-level Task):分析節點之間的關聯性,這在許多場景解析中尤為重要,比如理解不同物件間在圖片中的相互作用。

這篇介紹旨在為讀者提供對GNN和圖數據結構的基本理解。在未來的系列中,我們將深入探討GNN的技術細節和更多實際應用案例。敬請期待!

參考資料

avatar-img
33會員
43內容數
歡迎來到《桃花源記》專欄。這裡不僅是一個文字的集合,更是一個探索、夢想和自我發現的空間。在這個專欄中,我們將一同走進那些隱藏在日常生活中的"桃花源"——那些讓我們心動、讓我們反思、讓我們找到內心平靜的時刻和地方
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Karen的沙龍 的其他內容
本文探討了監督式學習、分群和相似度這幾個推薦系統算法,分別討論了它們的優點、缺點以及適用場景。這些算法在推薦系統中扮演著重要角色,並透過特徵選擇與預處理、相似度度量和鄰居的選擇等關鍵因素進行深入分析。文章最後提出在選擇推薦系統算法時應該考慮的因素,以及未來的研究方向。
Kafka是一個先進的分佈式流處理平臺,具有高吞吐量、可擴展性、容錯性和低延遲特性,提供瞭解耦、非同步和削峰特點。本文介紹了Kafka的通訊模式、適合的應用場景和未來發展趨勢,旨在幫助使用者更好地理解和應用Kafka。
本文探討了在使用 pandas 處理資料時應注意的幾個關鍵點,以及如何減少因資料型態問題而產生的錯誤,確保資料的原始意義得以保留。主要包括Pandas 資料處理深入解析,尋找CSV之外的數據儲存方案,以及優化資料處理策略。
上篇進一步認識基本的圖形架構與三大 Graph 算法,那首先從 shortest path 開始,我們會陸續去理解這些算法,以及可能的應用,如果還沒有看過上一篇的,可以點以下連結~那我們就開始吧! 【圖論Graph】Part1:初探圖形與圖形演算法之應用
本篇文章深入介紹了圖形的基本概念、組成和應用。從圖形的基本組成,到圖的類型與種類,再到圖形演算法的三大類型,本文將接續圖形領域的深入學習,並分享了對圖形的初步認識和學習方向的小心得。希望對正在學習圖形的人有所幫助。
0/5Graph
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
本文探討了監督式學習、分群和相似度這幾個推薦系統算法,分別討論了它們的優點、缺點以及適用場景。這些算法在推薦系統中扮演著重要角色,並透過特徵選擇與預處理、相似度度量和鄰居的選擇等關鍵因素進行深入分析。文章最後提出在選擇推薦系統算法時應該考慮的因素,以及未來的研究方向。
Kafka是一個先進的分佈式流處理平臺,具有高吞吐量、可擴展性、容錯性和低延遲特性,提供瞭解耦、非同步和削峰特點。本文介紹了Kafka的通訊模式、適合的應用場景和未來發展趨勢,旨在幫助使用者更好地理解和應用Kafka。
本文探討了在使用 pandas 處理資料時應注意的幾個關鍵點,以及如何減少因資料型態問題而產生的錯誤,確保資料的原始意義得以保留。主要包括Pandas 資料處理深入解析,尋找CSV之外的數據儲存方案,以及優化資料處理策略。
上篇進一步認識基本的圖形架構與三大 Graph 算法,那首先從 shortest path 開始,我們會陸續去理解這些算法,以及可能的應用,如果還沒有看過上一篇的,可以點以下連結~那我們就開始吧! 【圖論Graph】Part1:初探圖形與圖形演算法之應用
本篇文章深入介紹了圖形的基本概念、組成和應用。從圖形的基本組成,到圖的類型與種類,再到圖形演算法的三大類型,本文將接續圖形領域的深入學習,並分享了對圖形的初步認識和學習方向的小心得。希望對正在學習圖形的人有所幫助。
0/5Graph
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文探討了影像生成模型的多種應用,包括文字、圖像和聲音到影片的生成,涵蓋了GAN、Transformer和Diffusion等技術。透過回顧相關研究,分析影像生成技術的未來趨勢與挑戰,為讀者提供全面的理解與啟示。
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
此篇調查論文探討了Diffusion模型在文字、圖片和聲音轉換為影片,以及影片衍生和編輯的應用類型。作者也介紹了U-Net架構和Vision Transformer等生成圖像架構,並詳細探討了訓練模型的方法以及不同的影像資料集來源。
Thumbnail
上圖是根據彩色故事腳本生成的照片與草圖。 運用圖生圖的原理,把AI視覺故事腳本的其中一個畫面。擷取出來。 輸入重新繪製這張圖片 AI 會自然根據草圖,重新繪製元素一樣的精細畫面。
Thumbnail
這篇文章討論了自然語言處理技術的發展歷程,從語言模型的引入到深度學習的應用。作者觀察到現今GPT在產出中文國學內容時的深度不足,並提出了自然語言處理領域的倫理使用和版權問題,以及對大眾的影響。最後,作者探討了個人在自然語言領域的發展可能性。
Thumbnail
卷積神經網路(CNN)是一種專門用於影像相關應用的神經網路。本文介紹了CNN在影像辨識中的應用,包括圖片的組成、Receptive Field、Parameter Sharing、以及Pooling等技術。通過本文,讀者將瞭解CNN在影像辨識領域的優勢和運作原理。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
在數位化的世界中,用戶介面和信息圖表等視覺元素扮演著越來越重要的角色,而ScreenAI的開發為自然語言處理和計算機視覺的融合開啟了新的可能性。
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文探討了影像生成模型的多種應用,包括文字、圖像和聲音到影片的生成,涵蓋了GAN、Transformer和Diffusion等技術。透過回顧相關研究,分析影像生成技術的未來趨勢與挑戰,為讀者提供全面的理解與啟示。
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
此篇調查論文探討了Diffusion模型在文字、圖片和聲音轉換為影片,以及影片衍生和編輯的應用類型。作者也介紹了U-Net架構和Vision Transformer等生成圖像架構,並詳細探討了訓練模型的方法以及不同的影像資料集來源。
Thumbnail
上圖是根據彩色故事腳本生成的照片與草圖。 運用圖生圖的原理,把AI視覺故事腳本的其中一個畫面。擷取出來。 輸入重新繪製這張圖片 AI 會自然根據草圖,重新繪製元素一樣的精細畫面。
Thumbnail
這篇文章討論了自然語言處理技術的發展歷程,從語言模型的引入到深度學習的應用。作者觀察到現今GPT在產出中文國學內容時的深度不足,並提出了自然語言處理領域的倫理使用和版權問題,以及對大眾的影響。最後,作者探討了個人在自然語言領域的發展可能性。
Thumbnail
卷積神經網路(CNN)是一種專門用於影像相關應用的神經網路。本文介紹了CNN在影像辨識中的應用,包括圖片的組成、Receptive Field、Parameter Sharing、以及Pooling等技術。通過本文,讀者將瞭解CNN在影像辨識領域的優勢和運作原理。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
在數位化的世界中,用戶介面和信息圖表等視覺元素扮演著越來越重要的角色,而ScreenAI的開發為自然語言處理和計算機視覺的融合開啟了新的可能性。
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量