【邁向圖神經網絡GNN】Part1:圖數據的基本元素與應用

更新於 發佈於 閱讀時間約 1 分鐘
raw-image

GNN發展背景

傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,但其靈活性和複雜性遠超過一般的圖像數據。因此,為了有效處理這類複雜的圖形數據,圖神經網絡(GNN)應運而生。

圖(Graph)的基本定義

圖是由以下三個基本元素構成的數據結構:

  • 節點(Node):也稱為端點,代表單個數據實體,如化合物中的原子或社交網絡中的個人。節點儲存有關其本身的屬性信息。
  • 邊(Edge):也稱為連結,描述節點間的關係,如化合物中的化學鍵或社交關係中的友誼連結。邊可以具有方向性,並可能帶有權重。
  • 全局(Global):描述整個圖的通用屬性,如化合物的總體性質或社交網絡的類型。在某些模型中,可能會有一個稱為主節點(master node)的特殊節點來代表整個圖。

GNN可解決的問題類型

  1. 圖層級任務(Graph-level Task):處理整個圖的屬性,例如預測一種化合物是否具毒性或某社交網絡的屬性。
  2. 節點層級任務(Node-level Task):針對單個節點的屬性進行分析,如確定社交網絡中某人的社交圈層。
  3. 邊層級任務(Edge-level Task):分析節點之間的關聯性,這在許多場景解析中尤為重要,比如理解不同物件間在圖片中的相互作用。

這篇介紹旨在為讀者提供對GNN和圖數據結構的基本理解。在未來的系列中,我們將深入探討GNN的技術細節和更多實際應用案例。敬請期待!

參考資料

留言
avatar-img
留言分享你的想法!
avatar-img
Karen的沙龍
35會員
50內容數
歡迎來到《桃花源記》專欄。這裡不僅是一個文字的集合,更是一個探索、夢想和自我發現的空間。在這個專欄中,我們將一同走進那些隱藏在日常生活中的"桃花源"——那些讓我們心動、讓我們反思、讓我們找到內心平靜的時刻和地方
Karen的沙龍的其他內容
2024/11/16
本研究探討如何透過圖形資料庫模型來構建電子商務顧客的360度全景視圖,並使用客戶行為模型圖(CBMG)有效整合和分析客戶數據。研究強調理解顧客的行為模式和需求,並針對三種典型的購物行為類型進行分析,以提升網站設計和用戶體驗。通過Neo4j的應用,提供了可視化客戶行為模式的視角。
Thumbnail
2024/11/16
本研究探討如何透過圖形資料庫模型來構建電子商務顧客的360度全景視圖,並使用客戶行為模型圖(CBMG)有效整合和分析客戶數據。研究強調理解顧客的行為模式和需求,並針對三種典型的購物行為類型進行分析,以提升網站設計和用戶體驗。通過Neo4j的應用,提供了可視化客戶行為模式的視角。
Thumbnail
2024/07/28
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
2024/07/28
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
2024/07/24
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
2024/07/24
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
看更多
你可能也想看
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
我的「媽」呀! 母親節即將到來,vocus 邀請你寫下屬於你的「媽」故事——不管是紀錄爆笑的日常,或是一直想對她表達的感謝,又或者,是你這輩子最想聽她說出的一句話。 也歡迎你曬出合照,分享照片背後的點點滴滴 ♥️ 透過創作,將這份情感表達出來吧!🥹
Thumbnail
我的「媽」呀! 母親節即將到來,vocus 邀請你寫下屬於你的「媽」故事——不管是紀錄爆笑的日常,或是一直想對她表達的感謝,又或者,是你這輩子最想聽她說出的一句話。 也歡迎你曬出合照,分享照片背後的點點滴滴 ♥️ 透過創作,將這份情感表達出來吧!🥹
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
本文探討了影像生成模型的多種應用,包括文字、圖像和聲音到影片的生成,涵蓋了GAN、Transformer和Diffusion等技術。透過回顧相關研究,分析影像生成技術的未來趨勢與挑戰,為讀者提供全面的理解與啟示。
Thumbnail
本文探討了影像生成模型的多種應用,包括文字、圖像和聲音到影片的生成,涵蓋了GAN、Transformer和Diffusion等技術。透過回顧相關研究,分析影像生成技術的未來趨勢與挑戰,為讀者提供全面的理解與啟示。
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
此篇調查論文探討了Diffusion模型在文字、圖片和聲音轉換為影片,以及影片衍生和編輯的應用類型。作者也介紹了U-Net架構和Vision Transformer等生成圖像架構,並詳細探討了訓練模型的方法以及不同的影像資料集來源。
Thumbnail
此篇調查論文探討了Diffusion模型在文字、圖片和聲音轉換為影片,以及影片衍生和編輯的應用類型。作者也介紹了U-Net架構和Vision Transformer等生成圖像架構,並詳細探討了訓練模型的方法以及不同的影像資料集來源。
Thumbnail
VQGAN是一種基於GAN(生成對抗式網路)的生成式模型,可以創造新的、逼真的圖像或修改已有圖像。本論文介紹了改進VQGAN用於StableDiffusion中的新方法架構,並提出了一種新的非對稱式VQGAN,具有更強的解碼器和兩個設計條件解碼器。論文下方另附相關資料連結。
Thumbnail
VQGAN是一種基於GAN(生成對抗式網路)的生成式模型,可以創造新的、逼真的圖像或修改已有圖像。本論文介紹了改進VQGAN用於StableDiffusion中的新方法架構,並提出了一種新的非對稱式VQGAN,具有更強的解碼器和兩個設計條件解碼器。論文下方另附相關資料連結。
Thumbnail
上圖是根據彩色故事腳本生成的照片與草圖。 運用圖生圖的原理,把AI視覺故事腳本的其中一個畫面。擷取出來。 輸入重新繪製這張圖片 AI 會自然根據草圖,重新繪製元素一樣的精細畫面。
Thumbnail
上圖是根據彩色故事腳本生成的照片與草圖。 運用圖生圖的原理,把AI視覺故事腳本的其中一個畫面。擷取出來。 輸入重新繪製這張圖片 AI 會自然根據草圖,重新繪製元素一樣的精細畫面。
Thumbnail
卷積神經網路(CNN)是一種專門用於影像相關應用的神經網路。本文介紹了CNN在影像辨識中的應用,包括圖片的組成、Receptive Field、Parameter Sharing、以及Pooling等技術。通過本文,讀者將瞭解CNN在影像辨識領域的優勢和運作原理。
Thumbnail
卷積神經網路(CNN)是一種專門用於影像相關應用的神經網路。本文介紹了CNN在影像辨識中的應用,包括圖片的組成、Receptive Field、Parameter Sharing、以及Pooling等技術。通過本文,讀者將瞭解CNN在影像辨識領域的優勢和運作原理。
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News