更新於 2025/01/11閱讀時間約 6 分鐘

《向AI贏家學習!》日本26家頂尖企業最強「深度學習」活用術,人工智慧創新專案致勝的關鍵思

    ——日本「深度學習商業運用大獎」首屆得獎專案全收錄!——
    ◆最具影響力的日本財經媒體之一《日本經濟新聞社》集團日經BP旗下日經xTREND與日經xTECH主辦
    ◆Kewpie、NTT DOCOMO、日本菸草產業、軟體銀行、SMBC日興證券、三菱總合研究所、日本交易所……26家頂尖企業最成功的AI戰略直擊,多領域豐富案例完整解析
    ◆日本AI書籍第一人、東京大學松尾豐教授深入剖析「以深度學習提高附加價值」的關鍵議題
    ◆ AI改變世界之勢已不可擋,最大的機會在哪裡、最強的威脅是什麼,擺脫技術層面的思考,以人為本,預見戰略全面革新的美麗新世界!
    深度學習實踐案例全收錄好書《向I贏家學習!》
    深度學習實踐案例全收錄好書《向I贏家學習!》

    ★☆★ 書摘試閱【PLUG】 ★☆★

    以人工智慧替代包裝設計消費者調查,產品開發流程可能徹底翻轉

    ——包裝設計對商品銷售影響極大,因此運用深度學習來挑選。二○一九年四月開始引進「包裝設計喜好度評估預測AI服務系統」,將喜好程度分為五個等級來預測。目前有超過兩百間公司登錄使用。或許未來將大幅改變行銷活動中很費時的市場調查作業。
    致力於市場行銷調查和包裝設計開發業務的PLUG(東京千代田區),每年春、秋兩季都會舉辦「包裝設計排行榜」。這項調查針對市面上新推出的約五百項商品,詢問消費者喜好程度。一項商品會對一千名消費者進行問卷調查,目前共計調查過四千一百一十五項商品,代表已經累積了四百一十一萬五千人份的資料。
    「從過去累積的這些資料,成功推動了新的服務。」該公司小川亮社長說。所謂喜好度,係指將消費者是否喜好該商品包裝分成五個等級來評分時,受測者回答「很喜歡」、「喜歡」的比例。
    該公司將這項調查當作資料庫的服務銷售,開發出讓這些龐大資料經過深度學習後能評估包裝設計的人工智慧系統。在針對消費者的調查中,將喜好度分成五個等級請受訪者回答,而現階段進行的人工智慧則藉由分析開發中的包裝來預測0~5評分範圍內的喜好度。
    至於預測值的準確率,比較問卷調查結果實測值與人工智慧計算的預測值兩者之後判斷。得到的結果是,雖然會因為商品種類而有落差,仍得到相關係數(就整體而言實測值與預測值有多少相關性)為0.514,且數值絕對誤差低於0.25(百分之五)的比例(實測值與預測值之間誤差少的結果比例)為百分之七十二的佳績。
    使用全數據的百分之八十五學習推導出的結果作為預測值,其餘的百分之十五資料當作實測值加以驗證。結果顯示,啤酒、調味料、保養品等類別可得到高準確率,甚至達實用階段。目前有十一個類別使用這套方法。
    ●幾分鐘就能計算出喜好度的分析結果
    一般而言,包裝設計開發案多半先將設計案篩選至十個左右,如果要做消費者問卷調查,就會再精選出三案左右。至於如何篩選到三個案子,小川社長表示,初步階段只能仰賴負責人員的品味。
    「最初是設想在一開始篩選的階段用來輔助。在篩選出要進行問卷調查的設計案過程中,很可能出現優秀設計落選的遺珠之憾。如果能先透過人工智慧大致了解喜好程度的數值,就能當作決策時的參考。」
    這項服務可以在網路瀏覽器上使用。上傳想要查詢的商品影像,再選擇商品種類。用商品名稱和公司名稱作為反映品牌能力的係數,在雅虎上搜尋,將搜尋符合結果的數量當作「品牌分數」輸入。
    這麼一來,只要幾分鐘就能計算出結果。此外,分析結果還能以PDF或CSV檔案的形式下載,方便客戶在公司內部簡報時使用。「喜好度的平均值大約是3.8。一般來說近4分就非常好,如果只有2分左右最好放棄。大致是這個標準。」小川社長說明。至於使用費,查詢十個影像以內免費,若是簽約則會因為合約期間長短而有不同的月費;但如果是上傳張數無上限的方案,一年需支付六百萬日圓。
    ●如何判斷人工智慧分析結果的可信度?
    這項服務使用在包裝設計開發第一線時,客戶如何判斷人工智慧分析結果的可信度,進一步決定簽約呢?
    「坦白說,我們也一直在摸索。因為消費者問卷調查也不可能精算出絕對準確的數字。新型態的服務具備各種潛力,我們希望客戶嘗試各種途徑。」小川社長補充。
    如果消費者問卷調查的結果非常好,是否就會大幅提高該商品的銷量呢?答案是未必。新服務採取定額的訂閱型服務,可不限次數嘗試,成本比一般的消費者問卷調查便宜許多。此外,以往的問卷調查大約要花上一個月才能得到結果,這項新服務只要幾分鐘。
    設計出爐之後套用到新服務上看看,得到結果再據此修正設計,然後再次用新服務看看反應。像這樣,快速啟動PDCA循環(循環式品質管理)。這麼一來,確實能讓分數越來越高。在減少時間和成本的情況下,仍能得到好的結果。
    ●運用擁有的資料和分析獲得的知識,自家公司開發人工智慧系統
    令人驚訝的是,開發這套人工智慧系統的竟然是PLUG副社長坂元英樹。坂元過去是市場行銷調查員,據說完全沒有程式開發相關經驗。
    「委外的話一方面耗費成本,而且know-how會外流,因此最後還是決定內部自己嘗試。說起來真的滿辛苦,但只要有理想的開發環境,深度學習目前有很多資訊都是公開的,某種程度上確實能自行開發。如果沒搞清楚這一點就貿然委外,最後什麼都學不到。」小川表示。
    PLUG的強項是在相同的規格裡擁有大量過去的研究調查資料。然而,小川表示,除此之外還有其他優勢。
    「人工智慧的開發不是有程式和資料就行了,我們在評估包裝設計上,有很多過去累積的知識和見解。為了提高準確率,必須根據這些知識見解一步一腳印建立起訓練資料,然後持續不斷調整。」這才是該公司的優勢所在。
    ●也可以進行「美味」、「可愛」等要因分析
    二○二○年三月推出增加新功能的更新版本。在消費者問卷調查中設有自由作答欄位,這些以文字呈現的評價也作為調查資料大量保留下來。針對這類資料,用深度學習來進行自然語言處理,擷取關鍵字。
    將「美味」、「感覺很高級」、「可愛」等關鍵字分別建立模型,藉由加上分析商品影像,就能知道這個包裝搭配哪個關鍵字會得到比較高的分數。由於能進行這類要因分析,非常有助於思考包裝設計的方向。
    「用影像分析可以看出包裝的哪個部分反映在該關鍵字的加權上,並能以熱點圖來表示。我認為這套系統完成版本升級之後,對於設計決策會有很大幫助。」小川說道,同時展現未來開發的企圖心。
    📚《#向AI贏家學習!》日本26家頂尖企業最強「深度學習」活用術,人工智慧創新專案致勝的關鍵思維👉👉 https://reurl.cc/0DgX7x
    深度學習實踐案例全收錄好書《向AI贏家學習!》
    分享至
    成為作者繼續創作的動力吧!
    從 Google News 追蹤更多 vocus 的最新精選內容從 Google News 追蹤更多 vocus 的最新精選內容

    臉譜出版的沙龍 的其他內容

    你可能也想看

    發表回應

    成為會員 後即可發表留言
    © 2025 vocus All rights reserved.