【PCB】高速 PCB 佈線要點

閱讀時間約 2 分鐘

現在都在說人工智慧,但到現在來看,沒有一家PCB設計軟體公司的自動佈局,

自動佈線能完全代替PCB設計師的工作。很多PCB板自動佈局,自動佈線出來的

都是沒有用的,都是需要手工再修改,很麻煩,不如手工的好PCB 設計人員在佈

線高速電路板時面臨一項艱鉅的任務。

PCB 設計人員常見的設計技巧如下:

●在平實銅箔面上(solid ground plane)佈置高速信號線

接地銅箔層可分網狀面與平實面兩種

●藉由網格點式佈置過孔(Via)來避免漏電源(Hot Spot)。

●折彎線(trace bends)採 135⁰ 而不是 90⁰,避免銳角(acute angles)。

● 同一走線中相鄰銅線之間的最小距離必須為走線寬度的 4 倍。

每段彎曲應為走線寬度的 1.5 倍。

●增加瓶頸區域外的信號之間的距離,以規避crosstalk

●利用菊花鏈佈線(daisy chain routing),來避免長線頭( long stub traces)

以保持信號完整性

●不要在差分對之間放置任何組件或過孔

●高速差分對需要串聯耦合電容。這些電容器需對稱放置。

如此電容器和焊盤才不會有不連續性的阻抗。

●結合長度匹配( Incorporate length matching)以實現正負信號之間

的緊密延遲偏斜。

●使用較小的間距。使p越小,得到的偏斜就越少。

●信號線不可直跨兩個分割的板層(Split Plane)

●區隔數位與類比的接地板層以利降低噪聲(Noise)

●如果元件的寬度接近走線寬度,則可獲得最佳的高速性能。

【視頻】新手如何入門硬體 一本正經的電子電路入門

【視頻】學習PCB設計前的知識掃盲,新手向,越新手越好!

【視頻】看台灣如何靠一塊"電路板"風靡全球

為什麼會看到廣告
    avatar-img
    76會員
    124內容數
    1.占星軟體及運用 2.各種推運法(Transit / 次限 / 主限 / Solar Arc / 法達星限 / 中點占星等)
    留言0
    查看全部
    avatar-img
    發表第一個留言支持創作者!
    跨元探索的沙龍 的其他內容
    先進製程 : 用奈米數表示IC的生產技術等級(Technology Node), 業界稱7奈米以下的為先進製程 先進封裝 : 將 CPU、GPU、DRAM等IC利用3D堆疊進行封裝成一顆晶片 ■半導體元件分類 半導體封裝針對各式元件需求,有著不同的封裝型式; 因此 , 在探討封裝前 ●晶片尺寸定義
    ■什麼是矽砂 ( Silica Sand ?) 矽砂(二氧化矽砂 SiO₂), 也稱為石英砂,白砂或工業砂。矽砂必須包含 至少95%的SiO₂和少於0.6%的氧化鐵。如果沙子不符合此標準, 它將被稱為通常的“常規”沙子。 矽砂è經300多個步驟,純化成矽(矽棒), 矽純度須達99.9999%
    █半導體材料結構 半導體材料大體可分成三大區塊,即單晶、多晶、非晶。 █半導體材料之應用 ●薄膜電晶體(TFT)面板 控制每一個畫素開關的薄膜電晶體(TFT)是先使用化學氣相沉積(CVD) 在玻璃上方成長一層非晶矽,再將TFT製作在非晶矽上方,因為玻璃基板 其結構如下圖: ●太陽能電池
    先進製程 : 用奈米數表示IC的生產技術等級(Technology Node), 業界稱7奈米以下的為先進製程 先進封裝 : 將 CPU、GPU、DRAM等IC利用3D堆疊進行封裝成一顆晶片 ■半導體元件分類 半導體封裝針對各式元件需求,有著不同的封裝型式; 因此 , 在探討封裝前 ●晶片尺寸定義
    ■什麼是矽砂 ( Silica Sand ?) 矽砂(二氧化矽砂 SiO₂), 也稱為石英砂,白砂或工業砂。矽砂必須包含 至少95%的SiO₂和少於0.6%的氧化鐵。如果沙子不符合此標準, 它將被稱為通常的“常規”沙子。 矽砂è經300多個步驟,純化成矽(矽棒), 矽純度須達99.9999%
    █半導體材料結構 半導體材料大體可分成三大區塊,即單晶、多晶、非晶。 █半導體材料之應用 ●薄膜電晶體(TFT)面板 控制每一個畫素開關的薄膜電晶體(TFT)是先使用化學氣相沉積(CVD) 在玻璃上方成長一層非晶矽,再將TFT製作在非晶矽上方,因為玻璃基板 其結構如下圖: ●太陽能電池
    你可能也想看
    Google News 追蹤
    Thumbnail
    無論是何種線圈加工,後續仍有組裝及接線的工作得處理,然電子線相比於空心線圈會多了一個絕緣塑膠架部分,反而增加了些許不確定要素,因此特別提出討論說明。 由下圖所示,可知單一的電子線圈製作完成後,還須放置於對應的機構尺寸當中,經過多次組工序後才是完成品;倘若個別塑膠有產生了尺寸的變化,就有可能導致電子
    PCB 是什麼? PCB 是印刷電路板(Printed Circuit Board)的縮寫,它是電子產品中非常重要的一部分,用來連接和支撐電子元件。 PCB 設備股 定義:這些公司生產和提供製造 PCB 所需的機器和設備。例如,提供鑽孔機、電鍍設備、曝光機等。 作用:他們不直接生產 PCB,
    Thumbnail
    上期有介紹過,內繞式定子加工的生產設備有分為兩種型態,分別為針嘴式與入線式;主要的差異在於馬達繞線設計上是採用集中繞或分佈繞,可參考下圖說明,集中繞就是線圈僅繞於矽鋼片上的單一齒,而分佈繞則會跨越多齒進行遶線。傳統的感應馬達以及永磁無刷馬達大多使用分佈繞的設計,新式的無刷馬則改為採用為集中繞居多,除
    Thumbnail
    對筆者而言,電子線圈與空心線圈的差異,僅在是否連同絕緣塑膠架一併繞線,除此之外的繞線工藝皆如出一轍。但也因為絕緣塑膠架的加入,其實對量產而言,多了一個不穩定因素;過往經驗曾遇過塑膠架太薄,繞完後的漆包線圈過於緊迫,竟然造成塑膠架變形的詭異情況;亦有製造穩定性不足,塑膠架尺寸差異過大,進而影響到電子線
    Thumbnail
    多邊形空心線圈十分類似方形線圈,同樣會有個線圈外膨的現象,使得完成線型可能不如預期。在方形空心線圈的討論文章中,著重討論的是兩彎角之間的距離及漆包線徑的剛性強度影響,這些要素在多邊形線圈當中依然存在。簡單的描述,就是兩彎角越近,則彎角中間的直線段外擴越嚴重;漆包線越粗,代表線材越不容易彎折,也會增加
    Thumbnail
    圓形為空心線圈中最常出現的形狀,但很多設計者在規劃時,常常漏了一點,導致實際生產的尺寸有落差,那就是爬層空間。 如下圖所示,過往在空心線圈排列規劃時免不了兩種形式,左側的方形排列以及右側的緊實排列兩種,生產上是右側較為接近現實。但無論是左右兩種規劃,設計者往往都忽略了從線圈從第一層往上爬至第二層時
    Thumbnail
    解決了馬達設計上的難題,下一步就是馬達生產上的困擾,以下分為不同的部分一一說明之。 一、繞法變化 平角線若採用傳統馬達繞線法,首先會遇到進出口線的空間問題,導致平角線無法使用傳統馬達線圈的堆疊方式;如下圖所示,會有起繞線堆疊在線圈最內側,需要有額外的空間讓線材跑出來,但平角線缺乏任意成形的自由度
    Thumbnail
    本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
    Thumbnail
    在之前的文章中已經有提到細線併繞將會導致槽滿率的下降,本文就來深究其原因。 追根究柢就是因為多線併繞時,往往會於繞線的過程中,自然而然的產生類絞線排列,反倒使原本理想中的細線排列分佈,絞成了一個大圓線的配置,導致更多的間隙使得馬達槽滿率下降。 在線徑與並聯股數換算中有一個計算例,是4股的0.3m
    Thumbnail
    無論是何種線圈加工,後續仍有組裝及接線的工作得處理,然電子線相比於空心線圈會多了一個絕緣塑膠架部分,反而增加了些許不確定要素,因此特別提出討論說明。 由下圖所示,可知單一的電子線圈製作完成後,還須放置於對應的機構尺寸當中,經過多次組工序後才是完成品;倘若個別塑膠有產生了尺寸的變化,就有可能導致電子
    PCB 是什麼? PCB 是印刷電路板(Printed Circuit Board)的縮寫,它是電子產品中非常重要的一部分,用來連接和支撐電子元件。 PCB 設備股 定義:這些公司生產和提供製造 PCB 所需的機器和設備。例如,提供鑽孔機、電鍍設備、曝光機等。 作用:他們不直接生產 PCB,
    Thumbnail
    上期有介紹過,內繞式定子加工的生產設備有分為兩種型態,分別為針嘴式與入線式;主要的差異在於馬達繞線設計上是採用集中繞或分佈繞,可參考下圖說明,集中繞就是線圈僅繞於矽鋼片上的單一齒,而分佈繞則會跨越多齒進行遶線。傳統的感應馬達以及永磁無刷馬達大多使用分佈繞的設計,新式的無刷馬則改為採用為集中繞居多,除
    Thumbnail
    對筆者而言,電子線圈與空心線圈的差異,僅在是否連同絕緣塑膠架一併繞線,除此之外的繞線工藝皆如出一轍。但也因為絕緣塑膠架的加入,其實對量產而言,多了一個不穩定因素;過往經驗曾遇過塑膠架太薄,繞完後的漆包線圈過於緊迫,竟然造成塑膠架變形的詭異情況;亦有製造穩定性不足,塑膠架尺寸差異過大,進而影響到電子線
    Thumbnail
    多邊形空心線圈十分類似方形線圈,同樣會有個線圈外膨的現象,使得完成線型可能不如預期。在方形空心線圈的討論文章中,著重討論的是兩彎角之間的距離及漆包線徑的剛性強度影響,這些要素在多邊形線圈當中依然存在。簡單的描述,就是兩彎角越近,則彎角中間的直線段外擴越嚴重;漆包線越粗,代表線材越不容易彎折,也會增加
    Thumbnail
    圓形為空心線圈中最常出現的形狀,但很多設計者在規劃時,常常漏了一點,導致實際生產的尺寸有落差,那就是爬層空間。 如下圖所示,過往在空心線圈排列規劃時免不了兩種形式,左側的方形排列以及右側的緊實排列兩種,生產上是右側較為接近現實。但無論是左右兩種規劃,設計者往往都忽略了從線圈從第一層往上爬至第二層時
    Thumbnail
    解決了馬達設計上的難題,下一步就是馬達生產上的困擾,以下分為不同的部分一一說明之。 一、繞法變化 平角線若採用傳統馬達繞線法,首先會遇到進出口線的空間問題,導致平角線無法使用傳統馬達線圈的堆疊方式;如下圖所示,會有起繞線堆疊在線圈最內側,需要有額外的空間讓線材跑出來,但平角線缺乏任意成形的自由度
    Thumbnail
    本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
    Thumbnail
    在之前的文章中已經有提到細線併繞將會導致槽滿率的下降,本文就來深究其原因。 追根究柢就是因為多線併繞時,往往會於繞線的過程中,自然而然的產生類絞線排列,反倒使原本理想中的細線排列分佈,絞成了一個大圓線的配置,導致更多的間隙使得馬達槽滿率下降。 在線徑與並聯股數換算中有一個計算例,是4股的0.3m