喬叔帶你上手Elastic Stack:Elasticsearch的最佳實踐與最佳化技巧

更新於 發佈於 閱讀時間約 2 分鐘

📚讀後心得

當初在研究Elastic Stack,ILM這部份還不熟時,剛好搜尋到喬叔的鐵人賽文章,閱讀時彷彿挖到了寶,對於Index的管理講解得非常透徹,從Index如何被建立,使用Template以及Alias,再到導入ILM以及搭配Rollover以及Shrink等方式達到索引、搜尋、儲存等最佳化,一步一步穩定順利的完成,真的很感動。
之前使用Elastic Stack並沒有使用到ILM的配置,所以單個Index可能會超過官方建議的大小,並且使用的是以一天為單位,但實務上並非每個服務都是固定的大小,因此導入ILM對於整體的效能會有更好的幫助,並且使用三溫暖架構,讓最新的log都放在效能較好的機器上,較舊的log則隨著自定義的時間轉移到效能較差的機器上,讓搜尋能有更好的體驗。
而Rollover的使用,當資料量達到設定的條件、或是時間過太久,將Index進行rotate,產生新的Index來接收新的資料,讓原先的Index依照ILM的設定進入下一個warm phase階段。
Force Merge以及Shrink則是針對Segment Files數量以及Shards數量進行合併達到最佳化,Segment files的單檔愈大,總數愈少,空間使用率愈好,而已刪除的文件,會是透過「標示為刪除」的方式紀錄在新的Segment File,並且會等到merge時才真正的刪除,因此Force Merge將Shard中的Segment Files進行合併,可以釋放被標記要被刪除的文件在原先是read-only的Segment File所佔用的空間,藉此提升搜尋效率,;而Shrink則是減少Shards的數量,變少的規則是原先數值的因數,減少Shard的數量,增加Shard的大小,好處是可以提升搜尋的效率,儲存利用率也會較佳,壞處是如果Cluster rebalancing時成本較高,並且會限制資料被分散處理的能力,因此建議使用在較舊的資料上下去做優化處理。
書中還有提到很多最佳化的技巧,例如Shards建議的大小、memory cache的建議大小、Indexing大量資料時的處理方式等等,各種神奇的優化技巧可以讓你針對自己的使用情境下去做測試以及改善,讓你的Elastic Stack頭好壯壯,最後也感謝喬叔的經驗分享,讓我在研究Elastic Stack上少走了很多彎路,底下會放上鐵人賽的連結。
🔗【喬叔帶你上手Elastic Stack】總目錄 –> https://ithelp.ithome.com.tw/users/20129543/ironman/3148
為什麼會看到廣告
avatar-img
17會員
83內容數
golang
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Alan的開發者天地 的其他內容
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容 像管理公司一樣管理自己,像享受遊戲一樣享受生活 硬實力決定起點,軟實力決定能走多快多遠 Learning, Doing, Learning and Teaching Purpose of the
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容 為了學習而寫 闡述是最有效的學習方法 簡要記述內容中提出的主要想法,而不是蒐集引文,並努力思考與其他不同內容的想法連結再一起 Purpose of the book 書的目的 提供大腦一個外部記憶
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容從歷史帶到實戰的基礎書籍 由淺入深循序漸進的步調講解每個章節的主題 極度白話文的一本書 How the Book Changed Me? 這本書為我帶來什麼改變更了解自己對的區塊鏈與加密貨幣的意義
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容 天才並非真的存在,刻意練習才是真正通往專家的唯一途徑 練習的質與量勝過於單純的練習量 專注投入與信念至關重要 How the Book Changed Me? 這本書為我帶來什麼改變 讓練習在你
📚讀後心得 讀完心流這本書後,心流對我的生活有很大的改觀,心流,就是我們在做某件事情時,全神貫注進入渾然忘我的狀態,讓我想起有時候在想一段程式,如何做優化,並且一步一步漸漸達成,接著看一下時間,突然就快要下班了,原來我也體驗過心流,那種感覺真的是很美好,整個人很享受當下那種慢慢擊破目標,達成目
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容 像管理公司一樣管理自己,像享受遊戲一樣享受生活 硬實力決定起點,軟實力決定能走多快多遠 Learning, Doing, Learning and Teaching Purpose of the
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容 為了學習而寫 闡述是最有效的學習方法 簡要記述內容中提出的主要想法,而不是蒐集引文,並努力思考與其他不同內容的想法連結再一起 Purpose of the book 書的目的 提供大腦一個外部記憶
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容從歷史帶到實戰的基礎書籍 由淺入深循序漸進的步調講解每個章節的主題 極度白話文的一本書 How the Book Changed Me? 這本書為我帶來什麼改變更了解自己對的區塊鏈與加密貨幣的意義
👀QUICK REVIEW The book in 3 Sentences 用三段話說明這本書的內容 天才並非真的存在,刻意練習才是真正通往專家的唯一途徑 練習的質與量勝過於單純的練習量 專注投入與信念至關重要 How the Book Changed Me? 這本書為我帶來什麼改變 讓練習在你
📚讀後心得 讀完心流這本書後,心流對我的生活有很大的改觀,心流,就是我們在做某件事情時,全神貫注進入渾然忘我的狀態,讓我想起有時候在想一段程式,如何做優化,並且一步一步漸漸達成,接著看一下時間,突然就快要下班了,原來我也體驗過心流,那種感覺真的是很美好,整個人很享受當下那種慢慢擊破目標,達成目
你可能也想看
Google News 追蹤
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們從 AI說書 - 從0開始 - 103 至 AI說書 - 從0開始 - 105 的努力,已經完成資料集前處理,現在需要定義一個函數來加載這些清理過的數據集,並在預處
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 103 所載入的資料集,現在要來進行資料前置處理,首先載入需要的依賴: import pickle from pickle impo
Thumbnail
這篇文章主要是介紹了SQL查詢效能調校的方法,針對索引最佳化做了整理和分享,並提供了一些注意事項和建議。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
Thumbnail
抓取對象檔案,自動進行壓縮處理,壓縮後產出一個壓縮檔案,如此便可節省硬碟使用空間
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們從 AI說書 - 從0開始 - 103 至 AI說書 - 從0開始 - 105 的努力,已經完成資料集前處理,現在需要定義一個函數來加載這些清理過的數據集,並在預處
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 103 所載入的資料集,現在要來進行資料前置處理,首先載入需要的依賴: import pickle from pickle impo
Thumbnail
這篇文章主要是介紹了SQL查詢效能調校的方法,針對索引最佳化做了整理和分享,並提供了一些注意事項和建議。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 44說完 Embedding ,下一步就是闡述 Positional Embedding,其於原始 Transformer 架構中的角色
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 42中,見識了 Tokenizer 做的事情了,以下來羅列幾個要點: 它將原始文字轉成小寫 有可能將原始文字再進行切割 通常 T
Thumbnail
抓取對象檔案,自動進行壓縮處理,壓縮後產出一個壓縮檔案,如此便可節省硬碟使用空間