統計檢定運用方法.8

閱讀時間約 1 分鐘
檢查樣本數據是否符合常態分配,價格數據若是符合常態分配,則視為正常行情,反之則視為有突破訊號。常態分配檢定有數種方法,本文介紹的是w/s檢定,檢定統計量僅需計算樣本全距(w),還有標準差(s),然後求其比值,接者透過查表比較其上、下臨界值,查表值請參考下圖
有感而發的Multicharts程式碼,請參考如下
If Highest(High,10)-Lowest(High,10) > 3.777*StdDev(High,10) then Buy next bar at Highest(High,10) stop;
If Highest(Low,10)-Lowest(Low,10) > 3.777*StdDev(Low,10) then SellShort next bar at Lowest(Low,10) stop;
為什麼會看到廣告
avatar-img
21會員
112內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Piemann的沙龍 的其他內容
借用優勢比這個概念,觀察價格數據資料的多空變化,資料數據請參考下表一
Kolmogorov-Smirnov 適合度檢定,該方法為檢定樣本次數分配與某一特定母群體分配間的差異是否達到顯著性(一般用來檢定常態分配或是其他類型的連續性分配)。檢定統計量邏輯、計算流程、查表值請參考下列敘述
Durbin-Watson test,對模組的殘差項進行相關聯性檢定,常應用於迴歸分析以及需要限制殘差項要為獨立常態分配。不過我在應用上更關心價格資料是否有聚集在均線附近,若有則可以判定盤整盤,反之則有趨勢發生,相關統計檢定計算步驟詳列如下
模組的優劣比較有諸多方法,這裡介紹過度加碼的概念。直覺的,過度加碼並不能用在實際交易,因為交易者無法承擔破產風險,不過當模組在回測時,利用當前累積獲利金額的某一個比例來進行加碼,而且是過度加碼的方式來進行實驗,此時可以直覺地猜想,績效差的模組會因為沒有累積獲利而無法加碼。
1. 假如你有8筆實際的時間序列價格資料,依時間序列為X(1)、X(2)、...、X(8),然後價格資料給予標準化 2. 假如你有8筆數據,是透過標準常態分配亂數而得,由小而大依序為 Y(1)、Y(2)、...、Y(8)
承續前篇內容,另外使用第二種隨機性檢定方式,來判斷價格是否處於盤整盤,假若為盤整盤,價格應集中在均線位置附近或是前後相鄰的數值差異很小,數據計算方法如下
借用優勢比這個概念,觀察價格數據資料的多空變化,資料數據請參考下表一
Kolmogorov-Smirnov 適合度檢定,該方法為檢定樣本次數分配與某一特定母群體分配間的差異是否達到顯著性(一般用來檢定常態分配或是其他類型的連續性分配)。檢定統計量邏輯、計算流程、查表值請參考下列敘述
Durbin-Watson test,對模組的殘差項進行相關聯性檢定,常應用於迴歸分析以及需要限制殘差項要為獨立常態分配。不過我在應用上更關心價格資料是否有聚集在均線附近,若有則可以判定盤整盤,反之則有趨勢發生,相關統計檢定計算步驟詳列如下
模組的優劣比較有諸多方法,這裡介紹過度加碼的概念。直覺的,過度加碼並不能用在實際交易,因為交易者無法承擔破產風險,不過當模組在回測時,利用當前累積獲利金額的某一個比例來進行加碼,而且是過度加碼的方式來進行實驗,此時可以直覺地猜想,績效差的模組會因為沒有累積獲利而無法加碼。
1. 假如你有8筆實際的時間序列價格資料,依時間序列為X(1)、X(2)、...、X(8),然後價格資料給予標準化 2. 假如你有8筆數據,是透過標準常態分配亂數而得,由小而大依序為 Y(1)、Y(2)、...、Y(8)
承續前篇內容,另外使用第二種隨機性檢定方式,來判斷價格是否處於盤整盤,假若為盤整盤,價格應集中在均線位置附近或是前後相鄰的數值差異很小,數據計算方法如下
你可能也想看
Google News 追蹤
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
本周的上下幅度都非常大,一天四五百點是正常....但本周很可惜沒有賺到暴跌這段,策略都有符合進場方向,但都因為跳空,程式還偏向順勢,稍有反彈就會停損出場,這是比較可惜的,但這就看回測停損怎麼抓了,若停損過大可就會整體績效不好,這沒有對錯,但至少沒有重災害算是不錯了,新倉八月再持續維持紀律。
1.資金水位測試:資金比重是不是太高?有沒有做風險控管? 2.持股強弱測試:個股是回檔還是回跌?跌的有沒有比指數重? 3.心理素質測試:情緒有沒有失控?停損底線是甚麼? 4.交易週期測試:真的長線投資者嗎?長線投資策略有沒有瑕疵?如果指數再跌更重,因應策略是甚麼?
Thumbnail
技術指標源自統計學原理,反映市場變化的概率分佈,而非預測工具。本文了解指標背後邏輯有利活學活用,甚至自行改良創新。
Thumbnail
個股當沖完整記錄目前也會放上來做紀錄,其實量化自動交易就是完成實際上的回測數據,接下來就是嚴格執行,過程中不能干預,並維持確保系統正常執行,並持續開發新策略即可。
Thumbnail
本文討論了趨勢交易策略中的停損模式以及使用動向指標和擺動指標進行交易的情況。提出了更合理的追蹤停損方式以及對ATR指標的改良。作者將在接下來進行測試,並歡迎交流。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
大家好,我是小畢,在投資的路上,投資人都希望在股價低時買進,在股價高時賣出獲得報酬,正因為如此,就必須準確地預測何時是低點,以及何時是高點。 有些投資人會採用技術分析,利用各種技術指標來判斷低點和高點,例如移動平均線指標,當股價高於移動平均線時買進,股價低於移動平均線時賣出,而有的投資人則是採
Thumbnail
突破策略以抓取趨勢為目標,常見的操作方式包括股價、均線或成交量的突破。交易判斷基於過去一段時間的價格極值,進出場訊號明確。然而,此策略風險偏高,因此需要注意風險管理。改進方法包括添加趨勢濾網以及使用ATR軌道設定停損,以減少虧損並提高策略的穩定性。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
本周的上下幅度都非常大,一天四五百點是正常....但本周很可惜沒有賺到暴跌這段,策略都有符合進場方向,但都因為跳空,程式還偏向順勢,稍有反彈就會停損出場,這是比較可惜的,但這就看回測停損怎麼抓了,若停損過大可就會整體績效不好,這沒有對錯,但至少沒有重災害算是不錯了,新倉八月再持續維持紀律。
1.資金水位測試:資金比重是不是太高?有沒有做風險控管? 2.持股強弱測試:個股是回檔還是回跌?跌的有沒有比指數重? 3.心理素質測試:情緒有沒有失控?停損底線是甚麼? 4.交易週期測試:真的長線投資者嗎?長線投資策略有沒有瑕疵?如果指數再跌更重,因應策略是甚麼?
Thumbnail
技術指標源自統計學原理,反映市場變化的概率分佈,而非預測工具。本文了解指標背後邏輯有利活學活用,甚至自行改良創新。
Thumbnail
個股當沖完整記錄目前也會放上來做紀錄,其實量化自動交易就是完成實際上的回測數據,接下來就是嚴格執行,過程中不能干預,並維持確保系統正常執行,並持續開發新策略即可。
Thumbnail
本文討論了趨勢交易策略中的停損模式以及使用動向指標和擺動指標進行交易的情況。提出了更合理的追蹤停損方式以及對ATR指標的改良。作者將在接下來進行測試,並歡迎交流。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
大家好,我是小畢,在投資的路上,投資人都希望在股價低時買進,在股價高時賣出獲得報酬,正因為如此,就必須準確地預測何時是低點,以及何時是高點。 有些投資人會採用技術分析,利用各種技術指標來判斷低點和高點,例如移動平均線指標,當股價高於移動平均線時買進,股價低於移動平均線時賣出,而有的投資人則是採
Thumbnail
突破策略以抓取趨勢為目標,常見的操作方式包括股價、均線或成交量的突破。交易判斷基於過去一段時間的價格極值,進出場訊號明確。然而,此策略風險偏高,因此需要注意風險管理。改進方法包括添加趨勢濾網以及使用ATR軌道設定停損,以減少虧損並提高策略的穩定性。
Thumbnail
接續上一篇,繼續來講如何從常態分布的機率進行假設檢定,進而推論母體的平均數吧! 這篇會提到否證的邏輯、魔法數字0.5以及統計檢定到底是什麼這三個主題。
Thumbnail
  在上一篇文章解釋了常態分布怎麼幫助我們計算事件發生的機率,而更之前也看過了抽樣分布是如何形成常態分布的過程,現在就要利用這兩件事情來慢慢帶出什麼是統計學中的「假設檢定」了。