自己動作做"以圖搜圖"演算法

更新於 發佈於 閱讀時間約 2 分鐘
raw-image


raw-image

google的以圖搜圖相信大家都不陌生,非常好用

本人這篇文章是紀錄一下自己如何利用本身在人工智能方面的知識

土法煉鋼一個以圖搜圖算法,至於跟google一不一樣就待討論了

首先以圖搜圖本身是一個相似度比對問題,人類怎麼做相似度比對呢?

好比給你一堆圖片,之後要求你選一張喜歡的,之後把剩下的圖片都拿走

過一陣子你手上那張喜歡的圖片搞丟了,這時候唯一能做的就是根據印象

來查找最相似得圖片,這裡涉及到幾個概念,人腦中印象這個概念

1.印象這抽象的東西怎麼在機器中用數值的方式具體描述

2.圖片這東西如何變成印象

因此我用了一個自編碼器,來訓練將圖片壓縮在解壓縮的過程

來得到一個encoder,你可以把encoder想成壓縮器

用途是把圖片壓縮成印象,一種簡化表示

通俗一點來類比就是,例如大象有長長鼻子,那簡化表示後就剩鼻子

大概這樣子.

之後再用knn最近鄰搜索算法,把所有encoder完的z塞進去

之後再推論階段就把圖片丟入encoder>encoder執行轉換成z>

用這個z去當做knn的input來得到最相似的樣本.

一個簡單的以圖搜圖就完成了.


留言
avatar-img
留言分享你的想法!
avatar-img
于正龍(Ricky)的沙龍
38會員
62內容數
人工智能工作經驗跟研究
2025/03/05
你做錯了。你剛剛發給 ChatGPT 的「寫一個函式來……」的提示?刪掉它吧。這些通用提示就是為什麼你的編碼速度還跟其他人一樣的原因。 在與 AI 進行超過 3,000 小時的結對編程後,我發現了真正有效的方法——而這並不是你想的那樣。 真相是:85% 的開發者陷入了 AI 驅動的複製粘貼循環。
2025/03/05
你做錯了。你剛剛發給 ChatGPT 的「寫一個函式來……」的提示?刪掉它吧。這些通用提示就是為什麼你的編碼速度還跟其他人一樣的原因。 在與 AI 進行超過 3,000 小時的結對編程後,我發現了真正有效的方法——而這並不是你想的那樣。 真相是:85% 的開發者陷入了 AI 驅動的複製粘貼循環。
2025/03/05
簡介 — 我如何停止浪費時間的故事 幾年前,我意識到我花在“做事”上的時間比實際在專案上取得進展的時間要多。我醒來時有無休止的待辦事項清單、回復電子郵件、參加會議、審查檔,但到一天結束時,我覺得我實際上沒有在任何重要的事情上取得進展。 有一天,一個朋友告訴我: 忙碌並不等同於有效。 這讓
2025/03/05
簡介 — 我如何停止浪費時間的故事 幾年前,我意識到我花在“做事”上的時間比實際在專案上取得進展的時間要多。我醒來時有無休止的待辦事項清單、回復電子郵件、參加會議、審查檔,但到一天結束時,我覺得我實際上沒有在任何重要的事情上取得進展。 有一天,一個朋友告訴我: 忙碌並不等同於有效。 這讓
2023/09/30
看到滿多年輕工程師提問:工作時經常查 ChatGPT,感覺不太踏實,沒關係嗎? 讓我簡單談論一下這件事 --- 首先,讓我們把時間倒回 2000 年代 google 剛出來的時候 當時一定也是這樣, 年輕工程師遇到問題狂查 google 資深工程師則覺得 google 可有可無,
2023/09/30
看到滿多年輕工程師提問:工作時經常查 ChatGPT,感覺不太踏實,沒關係嗎? 讓我簡單談論一下這件事 --- 首先,讓我們把時間倒回 2000 年代 google 剛出來的時候 當時一定也是這樣, 年輕工程師遇到問題狂查 google 資深工程師則覺得 google 可有可無,
看更多
你可能也想看
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
上圖是根據彩色故事腳本生成的照片與草圖。 運用圖生圖的原理,把AI視覺故事腳本的其中一個畫面。擷取出來。 輸入重新繪製這張圖片 AI 會自然根據草圖,重新繪製元素一樣的精細畫面。
Thumbnail
上圖是根據彩色故事腳本生成的照片與草圖。 運用圖生圖的原理,把AI視覺故事腳本的其中一個畫面。擷取出來。 輸入重新繪製這張圖片 AI 會自然根據草圖,重新繪製元素一樣的精細畫面。
Thumbnail
今天要聊聊一個我最近AI作圖時常用的手法,就是使用真實世界的照片拼接縫合進AI生產的圖片後,補完AI作圖常出現的缺陷(歪曲的武器、錯誤的肢體姿勢、手指錯誤)。 使用這個方法,可以讓AI更貼近我所需要的完成圖,且少了很多用繪圖軟體修修補補的時間。
Thumbnail
今天要聊聊一個我最近AI作圖時常用的手法,就是使用真實世界的照片拼接縫合進AI生產的圖片後,補完AI作圖常出現的缺陷(歪曲的武器、錯誤的肢體姿勢、手指錯誤)。 使用這個方法,可以讓AI更貼近我所需要的完成圖,且少了很多用繪圖軟體修修補補的時間。
Thumbnail
這篇要來介紹運用AI生圖將好幾張圖拼湊成一張時,準備工作一定會遇到的問題 -- 圖片去背。我們來看看目前有哪些人工智慧去背功能,以及人工智慧達不到我們要求時的簡單工人智慧去背方法。
Thumbnail
這篇要來介紹運用AI生圖將好幾張圖拼湊成一張時,準備工作一定會遇到的問題 -- 圖片去背。我們來看看目前有哪些人工智慧去背功能,以及人工智慧達不到我們要求時的簡單工人智慧去背方法。
Thumbnail
常常聽到影像處理、Python、OpenCV等技術,最近又在流行機器學習、深度學習、CNN、人工神經網路,常常不知從何開始學習,如果有一本書能把這些知識從頭到尾講清楚有多好,再加上如果有最常用的案例實作,一定可以完整將這個現在最賺錢行業的領域變成一技之長。
Thumbnail
常常聽到影像處理、Python、OpenCV等技術,最近又在流行機器學習、深度學習、CNN、人工神經網路,常常不知從何開始學習,如果有一本書能把這些知識從頭到尾講清楚有多好,再加上如果有最常用的案例實作,一定可以完整將這個現在最賺錢行業的領域變成一技之長。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News