使用AI做材料性質預測

更新於 發佈於 閱讀時間約 1 分鐘

在這個AI已經發展的時代,我們有沒有可能使用現有數據判斷未知的材料性質?

以下為實際做過的案例,因為不確定是否已經公開,因此只會展現結果,而不會去討論那些元素的比例構成。

首先AI的訓練在這案例中使用了好幾種手法,只會介紹結果最好的,我參考了其他實驗室的結果,也是採這方法預測力最佳。

在測試中採用了Linear regressor、k-NN regressor、Random forest regressor、Support Vector Regression以及Neuralnetwork。

發現Random forest regressor預測力最好。

Random forest regressor有一些步驟必須知道,首先取一部份的資料作為訓練資料後放回,以避免過度訓練(訓練結果只符合這組數據,對同類型預測力不準),接下來挑選幾個特徵作為訓練決策,第三步是Bootstrap,也就是說要創造幾顆決策樹,合起來稱為一個隨機森林。

在此訓練中使用的是迴歸,以多數決作為訓練結果。

彈性

彈性

硬度

硬度

刮痕耐受(不確定材料領域這個怎麼稱呼)

刮痕耐受(不確定材料領域這個怎麼稱呼)

可以看到隨機森林做出不錯的預測,如果想用AI玩玩看材料的預測特性可以試看看,不過這篇採用了一千多個點,沒有很大量的數據,AI訓練是不會有好結果的。

因此這份數據珍貴之處在於研究生願意花費時日慢慢把數據建立起來,AI只是輔助而已。

謝謝讀者的觀看。



留言
avatar-img
留言分享你的想法!
avatar-img
蘆葦的沙龍
9會員
23內容數
藉由回顧黑澤明隨著時間拍攝的一部又一部電影,同時也述說著黑澤明本人的故事,並且對於電影的情節架構進行分析理解。
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
智能分析通常分為描述性(descriptive)、預測性(predictive)和指示性(prescriptive)三種類型。《哈佛商業評論》於2023年5月刊登了一篇名為〈行銷分析〉(Analytics for Marketers)的文章,探討了企業評估機器學習介入分析的適宜程度,以及如何選擇最適
Thumbnail
智能分析通常分為描述性(descriptive)、預測性(predictive)和指示性(prescriptive)三種類型。《哈佛商業評論》於2023年5月刊登了一篇名為〈行銷分析〉(Analytics for Marketers)的文章,探討了企業評估機器學習介入分析的適宜程度,以及如何選擇最適
Thumbnail
過去的研究顯示,員工通常對生成式人工智慧所提出的建議持有懷疑態度,這導致企業在建立了昂貴的AI系統後,卻無法充分發揮其效用。 這種現象與我們的直覺認知相符。由於機器學習和深度學習算法的複雜性,人們難以了解AI在產生結果之前的處理過程,這使得他們對AI的可信度產生極大的疑慮。 然而,在2023年9
Thumbnail
過去的研究顯示,員工通常對生成式人工智慧所提出的建議持有懷疑態度,這導致企業在建立了昂貴的AI系統後,卻無法充分發揮其效用。 這種現象與我們的直覺認知相符。由於機器學習和深度學習算法的複雜性,人們難以了解AI在產生結果之前的處理過程,這使得他們對AI的可信度產生極大的疑慮。 然而,在2023年9
Thumbnail
模型上線前的評估的嚴謹與否,攸關上線後模型的表現。你知道模型評估需要注意哪些細節?在評估過程的嚴謹性又可以如何分級呢?一起來看看吧!
Thumbnail
模型上線前的評估的嚴謹與否,攸關上線後模型的表現。你知道模型評估需要注意哪些細節?在評估過程的嚴謹性又可以如何分級呢?一起來看看吧!
Thumbnail
在這個AI已經發展的時代,我們有沒有可能使用現有數據判斷未知的材料性質? 以下為實際做過的案例,因為不確定是否已經公開,因此只會展現結果,而不會去討論那些元素的比例構成。 首先AI的訓練在這案例中使用了好幾種手法,只會介紹結果最好的,我參考了其他實驗室的結果,也是採這方法預測力最佳。 在測試中
Thumbnail
在這個AI已經發展的時代,我們有沒有可能使用現有數據判斷未知的材料性質? 以下為實際做過的案例,因為不確定是否已經公開,因此只會展現結果,而不會去討論那些元素的比例構成。 首先AI的訓練在這案例中使用了好幾種手法,只會介紹結果最好的,我參考了其他實驗室的結果,也是採這方法預測力最佳。 在測試中
Thumbnail
在資料科學中常可以聽到「權重」,可藉由專家經驗和機器學習取得「權重」,但他們差別是什麼?在透過演算法決定權重的想法相對盛行的現今,又如何整合兩種途徑的結果?
Thumbnail
在資料科學中常可以聽到「權重」,可藉由專家經驗和機器學習取得「權重」,但他們差別是什麼?在透過演算法決定權重的想法相對盛行的現今,又如何整合兩種途徑的結果?
Thumbnail
人們透過機器學習(machine learning),試著讓電腦能夠從大量資料中學習成長,不僅可以運用在生活各方面的功能提升,甚至還能透過這些既有的資料,起到鑑往知來的效果,處在當今資訊爆炸的時代,正是你開始學機器學習的最好時機!
Thumbnail
人們透過機器學習(machine learning),試著讓電腦能夠從大量資料中學習成長,不僅可以運用在生活各方面的功能提升,甚至還能透過這些既有的資料,起到鑑往知來的效果,處在當今資訊爆炸的時代,正是你開始學機器學習的最好時機!
Thumbnail
本文章想分享給你,我在閱讀有效合成數據的文章後,產生的理解與思考。 首先,本文章有三個有趣的實驗問題: 資料前處理(Data-Preprocession)對合成數據效度的影響。 是否需要對合成的機器學習模型調參(Tuning)。 效度測量是否能預測合成數據訓練的機器學習模型的準確度。
Thumbnail
本文章想分享給你,我在閱讀有效合成數據的文章後,產生的理解與思考。 首先,本文章有三個有趣的實驗問題: 資料前處理(Data-Preprocession)對合成數據效度的影響。 是否需要對合成的機器學習模型調參(Tuning)。 效度測量是否能預測合成數據訓練的機器學習模型的準確度。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News