付費限定讓Mistral 7B搞定長序列128K (e.g.雜誌),使用YaRN插值改良手法
付費限定

讓Mistral 7B搞定長序列128K (e.g.雜誌),使用YaRN插值改良手法

更新於 發佈於 閱讀時間約 11 分鐘

前言:

本篇精選熱點論文,基於ROPE(Rotary Position Embeddings)改善插值方式,讓模型可以在短序列(4K Tokens)進行訓練,接著在長序列(128K Tokens)僅做少數微調,甚至無須微調,就能達到泛化到極長輸入序列的能力,讓Context Window可以吞下一整本雜誌,生成困惑度足夠小的內容!

在寫這篇的同時Chatgpt4-turbo宣布能將輸入序列長度擴增到128K,應該有用到本篇所提出的方法,此方法使得LLM的效能還有應用彈性極大化,需要好好的學習一下。

論文與開源模型:

YaRN: Efficient Context Window Extension of

以行動支持創作者!付費即可解鎖
本篇內容共 4794 字、0 則留言,僅發佈於人工智慧宇宙你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
無限智慧學院的沙龍
95會員
128內容數
帶你用上帝視角,針對市面上具有高度價值的影片/論文/書籍,用東方取象,與西方邏輯辯證的角度同時出發,跟著我一起來探討宇宙萬事萬物的本質,隨時隨地都可以來一場說走就走的思維旅行。作者在台積電 / 聯發科等科技產業有累計10年的資歷,近期對於人工智慧,東方易經,西方辯證邏輯,還有佛法向內求有深度興趣。
留言
avatar-img
留言分享你的想法!
這次要介紹的這篇,使用Mask-LM的生成方式,可以達到最頂尖的FID/FVD分數,取得超越Diffusion Model的生成品質,並兼顧了生成速度,讓我們一起從MAGVIT開始,逐步理解到MAGVIT-V2,相信能讓對於最新影像生成領域有興趣的讀者,感到收穫滿滿。
對於天氣的精密掌握,不僅得以改善各種生存條件,還能藉此訂定各種軍事策略,對於各種地緣政治紛爭的此刻,有其重大意義,於是各國對於快速準確的天氣預測技術,皆十分有興趣。本文介紹Google Research 的研究利用AI來預測天氣,誤差可以勝過傳統超級計算機的估算,讓我們一起看看是怎麼做到的。
隨著生成式AI不斷的推陳出新,對於能有效壓縮這些豐富且大量內容的技術,變得至關重要,影響著傳輸速度與執行速度,本文的壓縮架構,能夠有效地做成專用IC,在同樣的畫質水準下,甚至能夠達成JPEG 1/3的壓縮後容量,此方法可應用在各種3D NeRF生成作品上面,各種VR與3D生成技術都必然會用到。
這次要介紹的這篇,使用Mask-LM的生成方式,可以達到最頂尖的FID/FVD分數,取得超越Diffusion Model的生成品質,並兼顧了生成速度,讓我們一起從MAGVIT開始,逐步理解到MAGVIT-V2,相信能讓對於最新影像生成領域有興趣的讀者,感到收穫滿滿。
對於天氣的精密掌握,不僅得以改善各種生存條件,還能藉此訂定各種軍事策略,對於各種地緣政治紛爭的此刻,有其重大意義,於是各國對於快速準確的天氣預測技術,皆十分有興趣。本文介紹Google Research 的研究利用AI來預測天氣,誤差可以勝過傳統超級計算機的估算,讓我們一起看看是怎麼做到的。
隨著生成式AI不斷的推陳出新,對於能有效壓縮這些豐富且大量內容的技術,變得至關重要,影響著傳輸速度與執行速度,本文的壓縮架構,能夠有效地做成專用IC,在同樣的畫質水準下,甚至能夠達成JPEG 1/3的壓縮後容量,此方法可應用在各種3D NeRF生成作品上面,各種VR與3D生成技術都必然會用到。