導入人工智慧的五項組織挑戰 — 系統連結缺失和資料稀缺

更新於 發佈於 閱讀時間約 4 分鐘

本文延續之前康斯坦丁·霍普夫博士等人的研究,該研究談及了〈人工智慧的組織導入:工藝與機械工作〉(Organizational Implementation of AI: Craft and Mechanical Work)中提出的五項組織挑戰。本文專注於這些挑戰中的第三項,即「系統連結缺失和資料稀缺」。

霍普夫博士等人的研究指出,大型國際企業通常使用已運行數十年的系統來支持業務流程。這些系統由不同技術堆疊而成。然而,將新開發的AI系統與現有系統進行連結,比一般人所想像的困難得多。管理階層通常認為透過適當的介面就可以實現連接,但實際上,開發這些介面往往比預期更為複雜,有時甚至根本不可行。這主要是因為在連結時,不僅需要改變IT系統,還需要重新設計整個業務流程,以實現數據驅動決策的有效性。

該研究引用了一位製藥業的數據科學家的觀點,他表示:「將新AI模型整合到現有系統中,這是我們無法實現的……我們雖然擁有眾多優秀的模型,但卻難以將它們部署在現有系統中。」

此外,在企業開發AI應用程式時,資料的可用性和品質是面臨的重大挑戰。根據霍普夫博士等人的研究,資料科學家在開始AI工程之前,需要花費大量時間來辨識、存取和準備資料。而存儲在IT系統中的資料通常並非為分析和預測而被記錄。因此,為了提升AI系統的預測品質,可能需要重新設計資料的生成來源和處理過程。

Credit Canva

Credit Canva

解決方案

霍普夫博士等人在他們的研究中提出了幾種應對系統連結缺失和資料稀缺挑戰的策略:

首先,建立AI系統和IT系統之間的橋樑至關重要。這可以通過引入各種第三方系統的介面,實現系統之間的無縫互通。然而,這些系統通常昂貴。另一個解決方案是利用機器人流程自動化(RPA)技術,觀察使用者在企業資源規劃(ERP)系統中執行的業務流程,並進行自動化處理。

其次,將預測結果轉換為可執行的方案對於提高用戶接受度至關重要。組織需要尋找將AI系統輸出呈現給最終用戶的新方法。例如,將預測結果轉換為可操作的方案,並在適當的時間和地點呈現給員工。

其三,讓AI系統扮演學徒的角色。這意味著讓AI系統觀察人類專家執行任務,並記錄所有相關的輸入資料和結果。通過觀察數千次的任務執行,系統能夠學習將輸入資料轉換為正確結果的函數。這樣的結果通常比人類專家的判斷更加精確。

最後,提高數據意識至關重要,因為資料提供者難以預測其他人將如何使用這些數據,且在解釋現有資料的真實含義方面可能存在困難。組織應該加強對資料品質的認識,並鼓勵跨部門間的資料共享和重複利用。同時,資料科學家應不斷強調原始數據點之間的相關性。這種數據意識的提升有助於改善資料的品質和精確度,進而提升AI系統的性能和可靠性。

羅凱揚(台科大兼任助理教授)、黃揚博(政大企管碩士、識商創辦人)

資料來源:Hopf, K., Müller, O., Shollo, A., & Thiess, T. (2023). Organizational Implementation of AI: Craft and Mechanical Work. California Management Review, 66(1), 23–47. https://doi-org.ezproxy.lib.ntust.edu.tw/10.1177/00081256231197445

✨ 歡迎追蹤,獲取更多相關資訊

► 識商IG:


https://www.instagram.com/bizsense2023/


► Line交流社群:


https://line.me/ti/g2/a2QRj--XfM3FRZBOZpB4rdJGravtdpVOeSLBpQ?utm_source=invitation&utm_medium=link_copy&utm_campaign=default


✨ 最新活動:AI商業策略讀書會

raw-image

詳細活動頁面 👉 https://bizsense-read.com/ai%E8%BD%89%E5%9E%8B/

留言
avatar-img
留言分享你的想法!
avatar-img
識商的沙龍
18會員
72內容數
AI轉型策略、AI商業思維,帶你從宏觀的角度看AI
識商的沙龍的其他內容
2024/02/04
瑞典斯德哥爾摩經濟學院(Stockholm School of Economics)助理教授卡佳·艾諾拉(Katja Einola)等人在2022年10月的《人力資源管理期刊》(Human Resource Management)上發表了一篇題為〈好朋友還是壞工具?探索人類和人工智慧在工作場所生態系
2024/02/04
瑞典斯德哥爾摩經濟學院(Stockholm School of Economics)助理教授卡佳·艾諾拉(Katja Einola)等人在2022年10月的《人力資源管理期刊》(Human Resource Management)上發表了一篇題為〈好朋友還是壞工具?探索人類和人工智慧在工作場所生態系
2024/01/20
紐約大學商學院的卡倫·安東尼(Callen Anthony)教授等學者於2023年9月在《組織科學》(Organization Science)期刊中發表文章,題為〈與AI協作:採取系統觀點探索未來的工作〉("Collaborating" with AI: Taking a System View
2024/01/20
紐約大學商學院的卡倫·安東尼(Callen Anthony)教授等學者於2023年9月在《組織科學》(Organization Science)期刊中發表文章,題為〈與AI協作:採取系統觀點探索未來的工作〉("Collaborating" with AI: Taking a System View
2024/01/09
本文延續先前刊登於《服務研究期刊》(Journal of Service Research)的論文《使用人工智慧執行服務》(Artificial Intelligence in Service),該論文建立了四種AI類型的框架,包括機械型AI、分析型AI、直覺型AI和共鳴型AI。基於這個框架,我們將
Thumbnail
2024/01/09
本文延續先前刊登於《服務研究期刊》(Journal of Service Research)的論文《使用人工智慧執行服務》(Artificial Intelligence in Service),該論文建立了四種AI類型的框架,包括機械型AI、分析型AI、直覺型AI和共鳴型AI。基於這個框架,我們將
Thumbnail
看更多
你可能也想看
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
本文揭示當前工業領域的一場無聲革命:智慧製造。在引言中,我們探討了智慧製造如何開啟生產力新紀元,隨後深入分析大數據如何加速生產過程中的創新與效率,成為本次革命的核心動力。從學術研究到現實應用,本文探討了智慧製造領域的發展脈絡,以及學界與業界共同推進的不可逆轉動能。
Thumbnail
本文揭示當前工業領域的一場無聲革命:智慧製造。在引言中,我們探討了智慧製造如何開啟生產力新紀元,隨後深入分析大數據如何加速生產過程中的創新與效率,成為本次革命的核心動力。從學術研究到現實應用,本文探討了智慧製造領域的發展脈絡,以及學界與業界共同推進的不可逆轉動能。
Thumbnail
延續上篇《停止對人工智慧進行摸索》(Stop Tinkering With AI)的論述,湯瑪斯.戴文波特教授等人提出了10項針對企業導入AI的建議。以下將詳細說明後五項: 6.規模部署 企業的目標不僅僅是開發單一演算法,而是要創建一個能夠應用於整體組織的解決方案。 以克利夫蘭診所(Cleve
Thumbnail
延續上篇《停止對人工智慧進行摸索》(Stop Tinkering With AI)的論述,湯瑪斯.戴文波特教授等人提出了10項針對企業導入AI的建議。以下將詳細說明後五項: 6.規模部署 企業的目標不僅僅是開發單一演算法,而是要創建一個能夠應用於整體組織的解決方案。 以克利夫蘭診所(Cleve
Thumbnail
許多企業嘗試以試探性方式引入人工智慧(AI),但由於規模過小,最終無法實現經濟價值的門檻。根據2019年麻省理工學院斯隆管理評論(MIT Sloan)和波士頓諮詢集團(Boston Consulting Group)的調查,有七成受訪的企業聲稱引入AI後僅帶來微不足道的業務效益。 美國貝伯森學
Thumbnail
許多企業嘗試以試探性方式引入人工智慧(AI),但由於規模過小,最終無法實現經濟價值的門檻。根據2019年麻省理工學院斯隆管理評論(MIT Sloan)和波士頓諮詢集團(Boston Consulting Group)的調查,有七成受訪的企業聲稱引入AI後僅帶來微不足道的業務效益。 美國貝伯森學
Thumbnail
延續上篇〈人工智慧主導設計的崛起〉(The Emergence of Dominant Designs in Artificial Intelligence)的論述,埃爾南德斯(Ferràs-Hernández, Xavier)副教授等人全面回顧了產業組織、技術管理、網路經濟學、營運管理和策略管理等
Thumbnail
延續上篇〈人工智慧主導設計的崛起〉(The Emergence of Dominant Designs in Artificial Intelligence)的論述,埃爾南德斯(Ferràs-Hernández, Xavier)副教授等人全面回顧了產業組織、技術管理、網路經濟學、營運管理和策略管理等
Thumbnail
什麼是人工智慧?人工智慧有哪些應用?在醫療、金融、交通、娛樂等各大產業,人工智慧早已經融入大眾生活中,為人類生活帶來無窮便利!以下介紹人工智慧的熱門技術,帶大家認識生活中的人工智慧有哪些! 人工智慧(Artificial Intelligence)是一套集結多種進階功能的技術總稱,透過演算法來查看
Thumbnail
什麼是人工智慧?人工智慧有哪些應用?在醫療、金融、交通、娛樂等各大產業,人工智慧早已經融入大眾生活中,為人類生活帶來無窮便利!以下介紹人工智慧的熱門技術,帶大家認識生活中的人工智慧有哪些! 人工智慧(Artificial Intelligence)是一套集結多種進階功能的技術總稱,透過演算法來查看
Thumbnail
本文延續之前康斯坦丁·霍普夫博士等人的研究,該研究談及了〈人工智慧的組織導入:工藝與機械工作〉(Organizational Implementation of AI: Craft and Mechanical Work)中提出的五項組織挑戰。本文專注於這些挑戰中的第三項,即「系統連結缺失和資料稀缺
Thumbnail
本文延續之前康斯坦丁·霍普夫博士等人的研究,該研究談及了〈人工智慧的組織導入:工藝與機械工作〉(Organizational Implementation of AI: Craft and Mechanical Work)中提出的五項組織挑戰。本文專注於這些挑戰中的第三項,即「系統連結缺失和資料稀缺
Thumbnail
根據瑞典斯德哥爾摩經濟學院愛立信研究中心的研究,即便是經驗豐富的公司,也在AI領域面臨著複雜挑戰。克服這些挑戰的關鍵就在於「人才」。 以汽車供應商在自駕車AI初期階段為例,他們需要不斷地優化演算法,同時面臨著資料整合和跨部門協作等新挑戰。隨著技術的演進,管理變得更加複雜,這時就需要優秀的技術人才和
Thumbnail
根據瑞典斯德哥爾摩經濟學院愛立信研究中心的研究,即便是經驗豐富的公司,也在AI領域面臨著複雜挑戰。克服這些挑戰的關鍵就在於「人才」。 以汽車供應商在自駕車AI初期階段為例,他們需要不斷地優化演算法,同時面臨著資料整合和跨部門協作等新挑戰。隨著技術的演進,管理變得更加複雜,這時就需要優秀的技術人才和
Thumbnail
智慧製造不只是個潮詞,它其實是工業4.0時代的心臟。從自動化、大數據、物聯網到人工智慧,智慧製造整合了這一切,打造出更高效、更可持續的生產環境。這篇文章會深入介紹智慧製造是什麼,以及如何掌握工業4.0的關鍵因素。唉呀,現在誰不說智慧製造啊?但究竟是啥米呢?簡單說
Thumbnail
智慧製造不只是個潮詞,它其實是工業4.0時代的心臟。從自動化、大數據、物聯網到人工智慧,智慧製造整合了這一切,打造出更高效、更可持續的生產環境。這篇文章會深入介紹智慧製造是什麼,以及如何掌握工業4.0的關鍵因素。唉呀,現在誰不說智慧製造啊?但究竟是啥米呢?簡單說
Thumbnail
雲端的概念如同打造一顆大腦,不論是亞馬遜 AWS、微軟 Azure、谷歌 GCP,都是一個媒介而已。當企業把 data 送到雲端開始建立 database 之後,雲端的大腦才會開始運作,而這個運作就是 AI。 AI 指「能模仿人類的智慧執行任務的系統或機器,可以根據所收集的資訊不斷自我調整、進化。」
Thumbnail
雲端的概念如同打造一顆大腦,不論是亞馬遜 AWS、微軟 Azure、谷歌 GCP,都是一個媒介而已。當企業把 data 送到雲端開始建立 database 之後,雲端的大腦才會開始運作,而這個運作就是 AI。 AI 指「能模仿人類的智慧執行任務的系統或機器,可以根據所收集的資訊不斷自我調整、進化。」
Thumbnail
每周一篇文章的讀書會心得報告摘要與筆記,本次分享文章為:AI 並非萬能!越洋採訪史隆獎得主、UCLA 台籍教授:2 缺陷要靠人類修補。 1.人工智慧技術; 2.資料寬廣度不足時,就會複製人類偏見; 3.即便條件相同,也無法每次都做出正確判斷; 4.餵指令給 AI 要多元化,嘗試換句話說、刻意混淆。
Thumbnail
每周一篇文章的讀書會心得報告摘要與筆記,本次分享文章為:AI 並非萬能!越洋採訪史隆獎得主、UCLA 台籍教授:2 缺陷要靠人類修補。 1.人工智慧技術; 2.資料寬廣度不足時,就會複製人類偏見; 3.即便條件相同,也無法每次都做出正確判斷; 4.餵指令給 AI 要多元化,嘗試換句話說、刻意混淆。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News