今天我們來看一個最近討論度非常高的AI繪圖新技術,一個讓你可以在幾秒鐘內看到成品,不論是訓練還是生成都大大降低了資源成本的技術。
※影片中有誤的地方補充在CC字幕,本篇內容也已修正。
這個AI爆炸年到現在也快過完了吼,大家應該都對「等待AI運算」這件事習以為常了吧!
自己的電腦如果配備稍微差一點,想算一張upscale就要等老久了,算完不滿意的話,來回修改、重繪,有時候搞到來一天都沒了。
就算是線上算圖平台,比如說Leonardo、Recarft,在人流正常的情況下,也都需要等待十幾秒至幾十秒。
這是因為擴散模型的工作過程中,逐步降噪需要時間來運算,要得到一張OK的圖,通常最少我們會用20步,有時候甚至會設到50步,每一步都需要耗費時間。
從很多年前開始,就有各方研究團隊在尋找改良方法,能夠兼顧加快生成、降低消耗、提高成果精度,於是各種各樣採樣器、調度器出現了;用SDwebui本機運算的人也都必裝xformers;後來更低耗能更快速的comfyui也誕生了。
但這些都還是基於擴散模型(LDMs=Latent Diffusion models)的算法之下。
在十月初的時候,中國清華大學的研究團隊發表了一篇論文,「潛在一致模型:透過幾步推理合成高解析度影像」,他們提出一種新的算法模型,有別於目前大家使用的擴散模型需要幾十步的降噪迭代,僅僅只用幾步就能讓AI生成出一張高品質的圖像,這個新的算法簡稱LCM或LCMs。
這是他們的展示頁面,你可以從arXiv Paper直接點開論文原文,我的能力有限,就不帶大家看論文了哈。
你需要知道的大概只有:他們發表的這個LCM可以直接distill目前市面上的擴散模型,distill這個字是蒸餾的意思,我應該會把它翻成「提煉」。
因為它能夠基於擴散模型去做精煉,所以才有了最後我們會講到的,僅僅是安插一個LCM lora,就可以讓擴散模型達到七步成詩的效果。
那接下來我們就來看一些實際範例。
從展示頁面上,點hugging face demo可以線上試用他們的研究成果。
這是一個簡單的試用介面,上面寫著它使用的模型是用LCM算法重新提煉的DSv7。
在上面這個框裡輸入prompt後,按一下run就可以感受LCM的極速運算了。因為能夠調整的設定有限,所以成品不用想會有多漂亮,在這個測試頁單純就體驗一個速度感,因此prompt不用特別精心去寫,可以隨便從平常玩的prompt裡面抽一個就好。
這是其中一串我隨便丟的測試prompt:
closeup, (line art) Michael Cheval style illustration of a twenty-year-old woman, focus-on-face, very beautiful, dressed in a beautiful turquoise blue lace dress, masterpiece, best quality, photography
(有時候會看到要等一下的情況,顯示等待隊列(好像是queuery),這不是等待運算本身,而是因為這是一個公開的雲端測試用平台,如果同時有太多人接進來使用,等待隊列就會稍微長一點,但因為每個排到的人算出結果的速度都很快,因此也不會等太久。這個情形本身也不容易遇上。)
從右上角可以看到它實際上真的只跑了4步,顯示結果有時候要等一下才會刷新,有時候會有幾張圖是整個黑掉的,不太確定是我這邊的問題,還是因為它是雲端的關係。
下面的進階設定打開,你可以調整參數看看不同的結果。
除了可以線上試用之外,現在團隊也給出了幾個LCM的大模型跟lora可供下載。
推薦平常有使用SDwebui也就是A1111,以及comfyui的朋友,把LCM的兩個lora載下來玩看看,lora的泛用性比較高,調用的操作上也比較簡單。
在Latent Consistency的hugging face頁面往下滑,你可以找到團隊發布的三個lora,按照平常那樣下載下來,丟進你放lora的地方就可以了。
要記得存檔的時候,或存完自己手動改一下檔案名稱,因為他們預設的檔名都一樣,比方說我把1.5 lora的檔案名稱設為LCM_SD15。
如果你也想試試看LCM的大模型,要注意,目前LCM大模型在SDwebui上沒辦法直接使用,它們需要透過新的LCM調度採樣方式來生成,目前webui要支援需要透過比較複雜的方式去安裝LCM調度器,而comfy上已經有一些大神製作了適配的custom nodes。
還沒有用過comfy的朋友可以參考一下,我之前做的comfy教學,真的不難的。
lora的調用方法跟一般lora一樣,在webui或comfy都是。
如果你使用的模型是1.5的,就套用1.5的LCM lora,如果是XL就套XL的LCM lora,可以同時疊加其他lora使用。
在comfy中要記得把採樣器改為LCM,如果你的comfy沒有LCM選項,打開manager更新下comfy,就可以看到了。
其實比起生成所耗費的時間與資源,我認為訓練才是接下來將會真正受惠的部分。
因為大型基模的訓練,需要耗費非常大的算力資源和時間,如果不能夠突破,那麼未來更加大型的繪圖模型的技術突破,可能不會太容易(我寫下這句話時,SDXL Turbo還沒出w),LCM或許就能為此帶來解方,也就是說,接下來繪圖模型的進化,可能會以更超乎想像的速度前進。
讓我們一起期待未來的發展吧!
我原本使用的SDXL sampler在更新comfy後,一直沒辦法正常使用,顯示紅框,後來我是把它整個砍掉重裝一遍。如果你在更新後也發生類似的問題,有nodes讀不出來,可以跟我一樣重裝,理論上就能解決。
另外還有一個消息,在剪片的時候呢,發現十一月底,Stability也發布了自己的即時文生圖模型,SDXL-Turbo,主打一個一步到位生成。
相關資料請點這裡,有興趣的朋友可以去看看,之後有時間我們再來聊聊這個turbo。
希望這篇文章有幫助到你,有任何問題歡迎在文章下方或影片下方留言。
也歡迎跟我分享你的使用心得、討論你對LCM的看法!