AI說書 - 從0開始 - 15

更新於 發佈於 閱讀時間約 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論:

  • Attention Layer的複雜度是O(n^2 * d)
  • Recurrent Layer的複雜度是O(d^2 * n)

這些資料出自於ChatGPT的關鍵技術 - Transformer的原始Google論文:Attention is All You Need, Vaswani et al. (2017)


我們已經用以下各種運算資源,得出Attention Layer比Recurrent Layer運算還快的結論:

  1. CPU執行Attention Layer: AI說書 - 從0開始 - 8
  2. CPU執行Recurrent Layer: AI說書 - 從0開始 - 8
  3. GPU執行Attention Layer: AI說書 - 從0開始 - 10
  4. GPU執行Recurrent Layer: AI說書 - 從0開始 - 10
  5. TPU執行Attention Layer: AI說書 - 從0開始 - 12
  6. TPU執行Recurrent Layer: AI說書 - 從0開始 - 13


綜上,有以下結論:

  • 透過避免Recurrence,Attention Layer比Recurrent Layer運算還快
  • Attention Layer的「One-to-One Word Analysis」使其能「偵測長句子的相依性」
  • Attention Layer的「Matrix Multiplication」充分利用了GPU與TPU的運算優勢
  • Attention Layer的「Matrix Multiplication」釋放了GPU與TPU能力,使其能執行更多運算、學習更多資訊


那明明自然語言處理之前是RNN的天下,怎麼後來變成是Transformer的天下了呢?關鍵分析如下:

  • RNN的「Recurrent Functionality」使其面臨句子很長時會忘記前面的字
  • Transformer的核心關鍵是「Mixing Tokens」,完整原文詮釋是「Transformers do not analyze tokens in sequences but relate every token to the other tokens in a sequence」,示意圖如下:
raw-image

圖片出自書籍:Transformers for Natural Language Processing and Computer Vision, Denis Rothman, 2024.

留言
avatar-img
留言分享你的想法!
avatar-img
Learn AI 不 BI
220會員
589內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
Learn AI 不 BI的其他內容
2024/06/20
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 35,我們完成書籍:Transformers for Natural Language Processin
2024/06/20
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 35,我們完成書籍:Transformers for Natural Language Processin
2024/06/20
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 34,我們談了許多 Transformer 議題,以下來做條列性結論: Transformer 迫使人工
2024/06/20
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從AI說書 - 從0開始 - 0到AI說書 - 從0開始 - 34,我們談了許多 Transformer 議題,以下來做條列性結論: Transformer 迫使人工
2024/06/20
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 33中,見識了基於 Transformer 的 Google 翻譯威力,評論如下: Google 翻譯似乎已經解決了 Corefer
2024/06/20
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 33中,見識了基於 Transformer 的 Google 翻譯威力,評論如下: Google 翻譯似乎已經解決了 Corefer
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:AI
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News