AI + Web3 公益課筆記 #1|大型語言模型是什麼?

更新於 發佈於 閱讀時間約 9 分鐘

2024.01.28

大家好!我使用了「節錄評論法」來寫下 AI + Web3 公益課 的筆記。這是一種讓筆記充滿活力,可以「和自己對話」的整理方式。

操作方式是,摘錄「印象深刻的段落和句子」或「令人困惑的段落」,並且「用自己的話發表看法」(in my opinion, IMO),甚至更進一步「與自己的經驗產生連結」。

讓我們馬上開始吧!

AI + Web3 公益課

AI + Web3 公益課


▇  開場嘉賓致詞

  • Web3 和 Web2 很不同的是,它是去中心化的,妥善處理了社區平台「保存、隱私、信任、價值確權、價值分配」等問題。
     
  • AU Universe 的願景是「將知識的價值回歸給創造知識的人」,在這裡發布的每一條訊息都會被你的數字分身(基於 AI 技術產生的 Avatar )學習,並且產生價值。

▇  課綱(講師:陳財貓)

raw-image

▇  大語言模型是什麼?

大語言模型是什麼?接龍機器

  • 大語言模型(Large Language Model, LLM)可理解為一種「預測下一個詞元(token)」的統計模型
    • 白話說 → LLM 是一個「接龍機器」
        

GPT 是什麼?從個別單字理解

  • GPT(Generative pre-trained transformer)是一種「生成式預訓練模型」。
     
  • Pre-trained:基於海量數據上的「預訓練」。
    • 白話說 → GPT 學富五車。
  • Generative:基於海量數據上的機率分佈「生成」新的數據。
    • 白話說 → GPT 能連貫文本。
  • Transformer:一種深度學習模型採用的「架構」,讓模型能理解我們輸入的文本( 一連串序列)。
    • 白話說 → GPT 能捕捉到字裡行間行間的依賴、從屬、因果關係等。
        

▍ChatGPT 是什麼?

  • ChatGPT 是 GPT 的其中一種版本,是一種應用產品(聊天機器人介面)。

【閱讀筆耕 IMO 🙋】何謂無情

挺喜歡 LLM 是「接龍機器」這樣的類比,而且 LLM 是「無情」的。

針對課綱中的「無情」一詞,我的理解是 LLM 雖然能夠不斷預測文字,但他並不能真正理解那些文字背後所傳達的意思,所以他是不帶感情,理性地從機率分佈中生成下一個 Token。


▇  GPT 可以用來做什麼?

▍執行自然語言處理任務

  • 生成式任務:例如寫文章、寫詩歌、寫程式碼⋯⋯。
  • 情感分析:例如餵食大量產品評論、新聞標題等人們的數位足跡,讓 GPT 研判並預測大環境的下一步。
  • 文本校正
  • 文本摘要
  • 聊天:角色設定可以是朋友、情人、專家⋯⋯甚至是神明(AI 佛祖、AI 耶穌)。
      

▍選單(menu)翻譯產品

 

raw-image

▍智能增強

  • 調用 GPT 學富五車的知識來服務目標群眾。
  • 窮盡一生,沒有任何一個人可以讀完這些來自於人類歷史上的精華——但是 GPT 卻可以,畢竟「預訓練」的數據量極大。

【閱讀筆耕 IMO 🙋】AI 讓心智腳踏車進化

人類非常擅長製造工具,工具是人類肢體和感官的延伸,例如腳踏車增加了人類(的雙足)移動的效率。

賈伯斯曾在一場專訪中說道:「對我來說,電腦是人類歷來發明的最重要工具,從此讓我們的心智騎上腳踏車。」

而當這台電腦還嵌上 AI 功能時,這台車進化了,甚至不用我們親自去踩踏,也能夠引領我們來到更遠的地方。

 

▍工作外包

複雜的問題簡單化,簡單的問題流程化。

Nevertheless, there is merit to the claim that much problem solving effort is directed at structuring problems, and only a fraction of it at solving problems once they are structured.
——Herbert A. Simon

大部分的問題解決努力,都集中在為問題構建結構上,而對於已經結構化的問題,實際解決它們只佔了一小部分努力。——赫伯特・西蒙

一但我們能把某些工作的具體場景「抽象化」成最核心的底層邏輯,那麼就有了可以外包(給別人做、給 AI 做)出去的本錢。

例如,把「設計提示(prompt)」這件事情,拆解為五個最根本的元素,而且它們之間具有可以畫出流程圖的關係,分發給 AI 來打理。

raw-image

【閱讀筆耕 IMO 🙋】外包前,先把「系統」剝到最乾淨

我聯想到《普通人的財富自由之道》裡提過工作外包的先決條件,稱之為「系統的植入」。不管你有沒有想要外包某一份工作,都先把系統給架設好:

  1. 寫下你在一週內做的所有事情。
     
  2. 將工作分為清單一(重複執行的工作)與清單二(一次性任務),然後丟掉清單二。
     
  3. 重新排列清單一,從最耗時到最不耗時。逐條找出你想要為其建立系統的任務。
     
  4. 寫出你是怎麼完成該任務的步驟動線。然後,確認流程,看看是否能找到任何不必要的步驟,先刪除所有不必要的步驟,然後才做優化,直到擁有你所能建立的最精簡和最高效的流程。
     
  5. 在你進行這段流程時創作一段「說明書」⋯⋯逐步累積起一套培訓內容。

這麽做的好處是,未來如果要招募夥伴,你會知道哪些事情可以外包?哪種人才是最優先的?而哪些事情是非我不可,沒有其他人可以接手?對接時,新成員就可以依循先前建置好的「說明書」很快地進入狀況。

同時,這些「說明書」也可以成為一再重複利用的模板,不斷迭代這套 SOP。

 

▍湧現能力(Emergent Abilities)

  • 在模型變大到一定程度時,出現了一些新的特性、能力或行為。例如思維鏈(Chain-of-Thought)多步推理能力。
    • 白話說 → 是「從量變到質變」,是「整體大於部分的總和」。

【閱讀筆耕 IMO 🙋】知識的點、線、面串起「湧現」

我覺得用「知識點線面」來理解何謂湧現能力,是很不錯的。

當餵食給模型的知識點少少的時候,這些知識點彼此是「孤島」,還沒有辦法產生交互作用。就像是一幅「只有A、B兩個節點的地圖」一樣,能做的事情很有限。

但是當知識點的數量多到一定程度時,這些知識點已經形成了一個「體系」,這時候模型已經具備舉一反三的能力。想像是一幅「記載著密密麻麻交通節點、路線的地圖」,你只是問他從A點到B點應該怎麼走,他可以給你不止一種解答,還為你比較多種方案的成本效益分析。

知識的點、線、面串起神經網路,交織成一個體系帶來 1+1 >2 化學效應,就是湧現。


▇  GPT 的不足與缺陷

GPT 有一個秘密,他其實是一個失憶症患者,為了不讓別人發現他的秘密,他把和別人的對話寫在一本日記本上;每次和別人說話之前,GPT 都會先翻閱一下日記本,回顧之前的對話,然後才做回應。

有限的上下文窗口(Context Window)

  • GPT 會「忘記」聊天中太早的內容
    • 知識點 → 因為「日記本」的容量是有限的。
       
  • 不相關的話題最好在不同對話裡聊
    • 知識點 → GPT 是會一次讀入所有對話內容,再做出反應的。
    • 知識點 → 所以 GPT 仍然會考量早期的訊息(只要還被「日記本」所涵蓋到),如果新、舊訊息彼此不相關的話,會變成一種雜訊,一種干擾。
       
  • 我們無法「訓練」GPT
    • 知識點 → 訓練是一種特定過程,涉及模型參數調整,只有 OpenAI 能執行
    • 知識點 → 我們覺得 GPT 愈來愈聰明,其實是因為他的「日記本」冊數更多、內容更豐富、讓他對背景訊息的掌握度更高的關係。

【閱讀筆耕 IMO 🙋】關閉訓練,保護隱私

點擊 GPT 聊天界面左下角頭像,進入「設定 ▷ 數據控制 ▷ 聊天歷史與訓練」選單,預設是開啟的。我們可以關閉這個功能,讓 GPT 不再紀錄聊天訊息,不允許 OpenAI 以我們的對話來訓練模型,這麼做更能保護隱私。

設定 ▷ 數據控制 ▷ 聊天歷史與訓練不允許 OpenAI 以我們的對話來訓練模型

設定 ▷ 數據控制 ▷ 聊天歷史與訓練不允許 OpenAI 以我們的對話來訓練模型

raw-image

 

過時的數據

  • 透過付費升級把 GPT 從 3.5 升級到 4.0,或是安裝外掛插件,可以大幅緩解這個缺失。 

 

幻覺(hallucination

  • GPT 編造不存在的東西與事實。
    • 白話說 → 一本正經的胡說八道。

【閱讀筆耕 IMO 🙋】不花錢,也能釋放 GPT 的能力

關於「過時數據」與「幻覺」這兩個問題是息息相關的。如果問 GPT 時事類問題,當他的數據庫太舊,導致他查不到正確答案時,他就會畫虎爛。

我之前使用一款名為「WebChatGPT」的瀏覽器插件,讓即使是沒有付費升級的 GPT 3.5,也能在網路上搜尋資料,就可以有效改善這個缺失。

以下是用「白飯之亂」新聞事件實測的結果:

before

before


after

after


🌱 免費訂閱【創作者經濟 IMO】電子報。
電子報是以 Heptabase 編輯,免費試用 7 天,和我們一起寫下 IMO。

🌱 加入中書神經系統圍爐,專題 #寫作的反思 與 #爐內真心話 連載中。

🌱 我在其它平台出沒【MetaXLiker SocialMattersMediumvocus 】
合作聯繫:penfarming.writer@gmail.com

🌱 我的教學文與邀請連結
註冊幣安幣安開戶+實名認證教學
註冊 Presearch 一舉三得的 search to earn 使用心得

avatar-img
22.3K會員
725內容數
關注各種對「創作者經營」有益的各種話題,例如創作技巧、心態及習慣養成、閱聽方法(輸入)、筆記方法(輸出)、文案、SEO、社群經營、數位行銷、數據分析、不同創作平台比較⋯⋯終而實現創作有價,結成「創作者經濟」的果實。 免費訂閱電子報 https://creatoreconomyimo.substack.com/
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
創作者經濟 IMO 的其他內容
以太幣、以太坊到底是什麼?兩者之間有什麼關係呢?從以太坊衍生出來的「智能合約」和「去中心化應用程式」,又是如何又是如何改變整個幣圈呢?本文帶你一探究竟!
壺鈴,起源於 18 世紀的俄羅斯,最初是用作農作物和貨物秤重的砝碼。現金,它已成為舉重、體能訓練和運動表現的主要訓練器材之一。
Friend.tech 簡稱 FT,是一款綁定推特帳號的 Web3 社交平台,也是近期最火熱的社 SocialFi 賽道,這篇文章紀錄了如何開通 Friend.tech 的每一動步驟,讓我們馬上開始吧!
⋯⋯如果 Shibarium 正式推出後得到市場認可,這將可能是柴犬幣發展的轉捩點,是引領柴犬幣「走向實用經濟」的重要一步棋;投資者將認真看待柴犬幣的基本面,柴犬幣生態系統的蓬勃發展,可能會出現更多人想要使用柴犬幣進行交易和參與相關應用。
龐氏騙局是什麼?本文以近期台灣傳統金融圈鬧得沸沸揚揚的 im.B、澳豐詐騙案,以及幣圈維卡幣 Onecoin 的故事作為說明,為大家介紹龐氏騙局的定義、特徵以及最重要的——我們能從這些案例中學到哪些啟示,如何避免成為龐氏騙局的受害者。
以太幣、以太坊到底是什麼?兩者之間有什麼關係呢?從以太坊衍生出來的「智能合約」和「去中心化應用程式」,又是如何又是如何改變整個幣圈呢?本文帶你一探究竟!
壺鈴,起源於 18 世紀的俄羅斯,最初是用作農作物和貨物秤重的砝碼。現金,它已成為舉重、體能訓練和運動表現的主要訓練器材之一。
Friend.tech 簡稱 FT,是一款綁定推特帳號的 Web3 社交平台,也是近期最火熱的社 SocialFi 賽道,這篇文章紀錄了如何開通 Friend.tech 的每一動步驟,讓我們馬上開始吧!
⋯⋯如果 Shibarium 正式推出後得到市場認可,這將可能是柴犬幣發展的轉捩點,是引領柴犬幣「走向實用經濟」的重要一步棋;投資者將認真看待柴犬幣的基本面,柴犬幣生態系統的蓬勃發展,可能會出現更多人想要使用柴犬幣進行交易和參與相關應用。
龐氏騙局是什麼?本文以近期台灣傳統金融圈鬧得沸沸揚揚的 im.B、澳豐詐騙案,以及幣圈維卡幣 Onecoin 的故事作為說明,為大家介紹龐氏騙局的定義、特徵以及最重要的——我們能從這些案例中學到哪些啟示,如何避免成為龐氏騙局的受害者。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
分享我怎麼「用 AI 設計一個學習流程」讓我把學過的英文「真的記住,並且用的出來」 這個過程不會碰到複雜的技術, 只需結合基本學習原則,還有在ChatGPT用中文下指令的技巧 這樣你以後就可以針對自己想學的英文內容設計客製化的學習材料跟練習過程喔!
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 102 說要窺探 WMT 資料集,以下著手資料集下載程式: import urllib.request # Define the
Thumbnail
你從自動回覆的留言中,串接到了這裡,這是CHATGPT所設定好的記憶技巧,當然有經過我的教導,有我的內容,但也不見得都會全對。就是一個思考的指引,你可以參考看看。 當然他的內容 不是只有勞動法令可以運用,至少會給你三種記憶技巧,你再看一下有沒有適合你的方法。※不過 請注意 其他法條的引用要注意一下
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
前陣子自己手刻了ChatGPT,並發了一系列文章: 使用Meta釋出的模型,實作Chat GPT - Part 0 使用Meta釋出的模型,實作Chat GPT - Part 1 使用Meta釋出的模型,實作Chat GPT - Part 2 使用Meta釋出的模型,實作Chat GPT -
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
分享我怎麼「用 AI 設計一個學習流程」讓我把學過的英文「真的記住,並且用的出來」 這個過程不會碰到複雜的技術, 只需結合基本學習原則,還有在ChatGPT用中文下指令的技巧 這樣你以後就可以針對自己想學的英文內容設計客製化的學習材料跟練習過程喔!
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 102 說要窺探 WMT 資料集,以下著手資料集下載程式: import urllib.request # Define the
Thumbnail
你從自動回覆的留言中,串接到了這裡,這是CHATGPT所設定好的記憶技巧,當然有經過我的教導,有我的內容,但也不見得都會全對。就是一個思考的指引,你可以參考看看。 當然他的內容 不是只有勞動法令可以運用,至少會給你三種記憶技巧,你再看一下有沒有適合你的方法。※不過 請注意 其他法條的引用要注意一下
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
https://www.youtube.com/watch?v=wjZofJX0v4M 這是我看過最好的AI科普影片了;現在流行的GPT使用的大語言模型 (large language model, LLM), 是把每一個單字都當作一個高維度向量 影片中GPT3共儲存50257個英文單字, 每
前陣子自己手刻了ChatGPT,並發了一系列文章: 使用Meta釋出的模型,實作Chat GPT - Part 0 使用Meta釋出的模型,實作Chat GPT - Part 1 使用Meta釋出的模型,實作Chat GPT - Part 2 使用Meta釋出的模型,實作Chat GPT -