「直觀」在證明中有地位嗎?:讀《機運之謎:數學家Mark Kac的自傳》

更新於 發佈於 閱讀時間約 5 分鐘

  在Mark Kac的自傳最後,他提出了一個很有意思的說法,叫作「相對性的公理化」[1]。我認為這個詞語說得很好,能夠讓我們把「形式思考」的不同方式區分的更清楚。

  在19-20世紀建立的新邏輯系統,以羅素和懷海德合著的《數學原理》為代表,試圖把所有的數學/邏輯學定理還原為一組可用符號表示的邏輯公理。這樣做的目的,是為了讓我們在數學和邏輯應用中所做的推論,能夠有穩固的、非正確不可的基礎。

  我們這裡不討論前述「邏輯主義」的嘗試能不能成功,而是想討論另一個問題:傳統的邏輯和幾何學,一樣也是基於形式化、公理化的方式來進行推論;那麼,20世紀的「公理化數學」(即Kac用引號括起來的「新數學」),和傳統的數學/邏輯學有什麼差異呢?

  我們先來看看它們相同的地方。不論是一般數學或公理化數學,都是由「公理」、「定理」和「證明(過程)」三個要素組成。「公理(或公設)」是在一個系統內顯而易見、或邏輯上不可能有相反情況的基本事實;並且,如果有一個事實在這個系統內是可證明的,那就是說我們應當可以以公理為前提,用合乎邏輯規則的論證,將這個事實推導出來。而這樣可證明的事實就稱為「定理」。也就是說,總體來看,這種「公理—證明—定理」的三層結構,是一般數學和公理化數學相同的地方。

  那麼,它們不同的地方,首先便會出在「公理」這個最基礎的環節上。讓我們來看看研究傳統邏輯的哲學家怎麼說。羅光在《士林哲學——理論篇》裡,這樣解釋在士林哲學的版本中,詞項邏輯系統「公理必由經驗而來」的定理。羅光說:

推論所用的最基本原理,是由歸納而得的。因為不然,這些最基本的原理便該是天生的了。然而,人所有的觀念,沒有天生的,都是由人的經驗而得的。因此,推論用的基本原理所有的觀念,是由感覺的經驗以構成的。不過,這些觀念的互相接合,理智則一望而知,用不著另找理由去證明,假使不是這樣,一項理由追求另一項理由,便沒有止境了,因此,最基本的原理,該當是不用證明,就明白的原理。[2]
數學上的公理,定理,公法,由歸納而成。我們在上面已經說過,不得證明的原理,是由經驗而得;因為理智在具體的事例上,透視出共通的公理。[3]

根據前面的這些敘述,一般數學和詞項邏輯的「公理」是建諸於經驗之上,而不是建諸於邏輯之上。但是,公理化數學的「公理」則只是一組用符號組成的邏輯式;這些公理之所以為真,只是因為我們(人類)規定符號是這樣運用的,而不是因為公理對應到任何事實。

  從這個角度來看,一般數學和公理化數學的不同就很明瞭了;一般數學的公理,仍然建立在經驗之上,或用一個康德式的術語,是建立在「直觀」之上。而「公理」是整棟數學/邏輯學大廈的根基;那麼,整個一般數學,便都是建築在「直觀」之上。這就無怪乎哲學家尤格拉(Palle Yourgrau)把一般數學稱為「直觀數學」[4](intuitive arithmetic)。

  從這裡再回來看Kac對一般幾何學和「新數學」之間不同的觀察,尤其可見出Kac令人驚喜的洞識。Kac說:

當你學習初等幾何學時,很可能是在「新數學」嚴格公理化猖狂起來之前,所遇到的是那種舊式的幾何。它處理幾何採用的方法,一部分是直觀的,一部分是嚴格的——不妨叫做相對性的公理化。你探討的是點、直線、三角形、直角、全等、相似以及所有的種種事物。但你曾經有過,無法真正了解什麼是點或什麼是直線嗎?

[5]換言之,在一般數學,雖然我們從「公理」推論出「定理」,但是公理和定理都基於我們的「直觀」(即我們的經驗)。所以,Kac把這種不排拒直觀的公理系統稱為「相對性的公理化」。或者我們借用這個說法,也可以把不排拒直觀的形式系統(如亞里斯多德式的邏輯)稱為「相對性的形式化」。這算是解決了我個人在理解邏輯學時,很難清楚的理解「形式化」的意思究竟是什麼的問題。

  最後,再讓我們看看Kac對於數學積極的主張。他主張:「數學」是直觀(他稱之為「想像力與洞察」)和邏輯必然性之間互相增益、共同促進的內容,而不能割捨其中的任何一面。我借用他一句精彩簡潔的話,來作為本文結論。Kac說:

在數學中,邏輯是一種牢固的制約,只能提供「不可避免性」的結論,但是「驚奇」的要素必須來自邏輯的外部,透過想像力與洞察得到。[6]

註解:

[1]Mark Kac著,蔡聰明譯:《機運之謎:數學家Mark Kac的自傳》(臺北:三民書局股份有限公司,2013年),頁229。

[2]羅光:《士林哲學——理論篇》,《羅光全書.冊20》(臺北:臺灣學生書局,1996年),頁136。

[3]羅光:《士林哲學——理論篇》,《羅光全書.冊20》,頁139。

[4]帕利.尤格拉(Palle Yourgrau)著,尤斯德、馬自恆譯:《沒有時間的世界——愛因斯坦與數學大師哥德爾》(臺北:商周出版.城邦文化事業股份有限公司,2006年),頁96。

[5]Mark Kac著,蔡聰明譯:《機運之謎:數學家Mark Kac的自傳》,頁229。

[6]Mark Kac著,蔡聰明譯:《機運之謎:數學家Mark Kac的自傳》,頁231。

2024/05/26

留言
avatar-img
留言分享你的想法!
avatar-img
傅元罄的沙龍
69會員
153內容數
對有興趣的哲學論題進行科普,希望吸引大家來一起討論。
傅元罄的沙龍的其他內容
2025/03/31
本文探討AI革命的風險與益處,並以OpenAI執行長奧特曼的事件為例,分析「有效利他主義者」與「有效加速主義者」的觀點差異。文章批判將AI技術封閉於營利機構的風險,並指出「實用主義」的侷限性,強調人類應基於自身目的運用AI,避免被科技奴役。 (本摘要由方格子AI所生成)
Thumbnail
2025/03/31
本文探討AI革命的風險與益處,並以OpenAI執行長奧特曼的事件為例,分析「有效利他主義者」與「有效加速主義者」的觀點差異。文章批判將AI技術封閉於營利機構的風險,並指出「實用主義」的侷限性,強調人類應基於自身目的運用AI,避免被科技奴役。 (本摘要由方格子AI所生成)
Thumbnail
2025/03/17
為人工作,客觀上就是一件受制於人的事情。受制於公司所提供的資源、人力支援、還有分派的工作量。明明是我們自己的任務,即使自己希望能夠好好的做,但別說是追求卓越了,就連僅僅只是維持應有的標準,卻也都還是受制於這些操之於他人手中的財力、人力的效用。
Thumbnail
2025/03/17
為人工作,客觀上就是一件受制於人的事情。受制於公司所提供的資源、人力支援、還有分派的工作量。明明是我們自己的任務,即使自己希望能夠好好的做,但別說是追求卓越了,就連僅僅只是維持應有的標準,卻也都還是受制於這些操之於他人手中的財力、人力的效用。
Thumbnail
2025/02/17
我把「陰謀論」界定無法被事實或論據所糾正的一系列看法;陰謀論的特點便是「看法」單方面的決定相信什麼事實和事實如何解釋,而事實或論據對他們的「看法」不存在真正的、有意義的影響。
Thumbnail
2025/02/17
我把「陰謀論」界定無法被事實或論據所糾正的一系列看法;陰謀論的特點便是「看法」單方面的決定相信什麼事實和事實如何解釋,而事實或論據對他們的「看法」不存在真正的、有意義的影響。
Thumbnail
看更多
你可能也想看
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 五 艾杜凱維茨的語構範疇理論有兩個關於形式語言的預設﹕[Ajdukiewicz 1935: 2]57 1.4.1_1 一個詞構 (das Wortgefüge)58 必須是一個連貫的整體才具有意義。 1.
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 五 艾杜凱維茨的語構範疇理論有兩個關於形式語言的預設﹕[Ajdukiewicz 1935: 2]57 1.4.1_1 一個詞構 (das Wortgefüge)58 必須是一個連貫的整體才具有意義。 1.
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 九 亞里士多德的語法觀點有其邏輯上的需要。他的詞項邏輯 (term logic)52 處理的都是屬於後人稱作「直言命題」的句式。 撇開量詞不談,直言命題可以簡化為一個基本句式﹕主語 + 謂語
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 七 「概念」很可能是歐洲哲學史中最常用的其中一個語詞,就好像數學工作者的「數」,但概念總是作為一種心智建構提出或使用,對弗雷格要創建的新邏輯 —— 即以客存事物為對象的新邏輯 —— 來說,它可以
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 七 「概念」很可能是歐洲哲學史中最常用的其中一個語詞,就好像數學工作者的「數」,但概念總是作為一種心智建構提出或使用,對弗雷格要創建的新邏輯 —— 即以客存事物為對象的新邏輯 —— 來說,它可以
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 六 必須注意的是,弗雷格的這個眼光不是來自偶然的發現。 他對語言的分析有一個系統性的理解。在《算術基礎》(1884) 的導言末,弗雷格提出三條原則,作為該研究 (對自然數的研究) 的規範。
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 1.2 函數概念小史 1.3 弗雷格的函數概念 六 必須注意的是,弗雷格的這個眼光不是來自偶然的發現。 他對語言的分析有一個系統性的理解。在《算術基礎》(1884) 的導言末,弗雷格提出三條原則,作為該研究 (對自然數的研究) 的規範。
Thumbnail
1.0 從函數到函算語法 1.3 弗雷格的函數概念 三 弗雷格認為這樣的一個定義 —— 即李善蘭從德摩根借來的函數定義 —— 不能接受,因為它「沒有區別外型與內容﹑記號與所記 ...」43。美國邏輯學家奎因的《數理邏輯》(Mathematical Logic 1940) 在哲學和邏輯的
Thumbnail
1.0 從函數到函算語法 1.3 弗雷格的函數概念 三 弗雷格認為這樣的一個定義 —— 即李善蘭從德摩根借來的函數定義 —— 不能接受,因為它「沒有區別外型與內容﹑記號與所記 ...」43。美國邏輯學家奎因的《數理邏輯》(Mathematical Logic 1940) 在哲學和邏輯的
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 三 在柏拉圖的影嚮下,亞里士多德的詞項邏輯 (term logic) 只處理一種句式,就是主語-謂語結構的句式。他的邏輯提出了一個有的效論辯理論,稱為「συλλογισμος」,嚴復 (1854-1921) 在節譯約翰•史都華•密爾 (Joh
Thumbnail
1.0 從函數到函算語法 1.1 句子成份 三 在柏拉圖的影嚮下,亞里士多德的詞項邏輯 (term logic) 只處理一種句式,就是主語-謂語結構的句式。他的邏輯提出了一個有的效論辯理論,稱為「συλλογισμος」,嚴復 (1854-1921) 在節譯約翰•史都華•密爾 (Joh
Thumbnail
導論:一個西方觀點的評述 四 在《符號邏輯及其應用》[MacColl 1906] 一書中,麥哥對「陳述」(statement) 和「命題」(proposition) 作出區分。他的符號邏輯將「陳述」定義為任何用於表達訊息的聲音﹑記號或符號 (或對聲音﹑記號或符號作出的任何排列)﹔「命題」則定義為
Thumbnail
導論:一個西方觀點的評述 四 在《符號邏輯及其應用》[MacColl 1906] 一書中,麥哥對「陳述」(statement) 和「命題」(proposition) 作出區分。他的符號邏輯將「陳述」定義為任何用於表達訊息的聲音﹑記號或符號 (或對聲音﹑記號或符號作出的任何排列)﹔「命題」則定義為
Thumbnail
邏輯是我們思考的基礎,影響著我們如何看待世界和進行推論。透過假設前提和推論,我們可以從邏輯的角度來思考生活中的各種情況和決策。深入瞭解邏輯可以幫助我們更清晰地思考,理解事物之間的關聯。
Thumbnail
邏輯是我們思考的基礎,影響著我們如何看待世界和進行推論。透過假設前提和推論,我們可以從邏輯的角度來思考生活中的各種情況和決策。深入瞭解邏輯可以幫助我們更清晰地思考,理解事物之間的關聯。
Thumbnail
1. 凡所有相皆是虛妄,若見諸相非相,即見如來 2. 能量看不到,卻統籌物理世界(形而上統籌形而下) 3. 數學與物理的不同:數學「定理」:絕對真理,不因時空轉換;物理「定律」:找到自然背後的律,而非證明 4. 數學的本質:建立在不能再問的「公理」上 5. 歐式平
Thumbnail
1. 凡所有相皆是虛妄,若見諸相非相,即見如來 2. 能量看不到,卻統籌物理世界(形而上統籌形而下) 3. 數學與物理的不同:數學「定理」:絕對真理,不因時空轉換;物理「定律」:找到自然背後的律,而非證明 4. 數學的本質:建立在不能再問的「公理」上 5. 歐式平
Thumbnail
《底層邏輯》在【超閱讀觀點83】有介紹過,西恩之所以要把《底層邏輯2》再隔兩本介紹,主要原因在於,這本書是以許多人聞之色變的「數學」出發,把我們會遇到的「現象」用數學解釋,所以基本上,相較於《底層邏輯》的高易讀性,《底層邏輯2》顯然沒辦法讀那麼快,且更需要思考,不過能得到的收穫也更多。 《底層邏輯
Thumbnail
《底層邏輯》在【超閱讀觀點83】有介紹過,西恩之所以要把《底層邏輯2》再隔兩本介紹,主要原因在於,這本書是以許多人聞之色變的「數學」出發,把我們會遇到的「現象」用數學解釋,所以基本上,相較於《底層邏輯》的高易讀性,《底層邏輯2》顯然沒辦法讀那麼快,且更需要思考,不過能得到的收穫也更多。 《底層邏輯
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News