AI說書 - 從0開始 - 195 | 第七章總覽

更新於 2024/09/28閱讀時間約 2 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


AI說書 - 從0開始 - 194 | 第七章總覽 中提到會用「改進」和「擴散」兩個面向來探討 OpenAI 模型,我們先探討「改進」的部分。


本章的改進重點將放在 OpenAI Transformer 模型的架構上,分別為:

  • Decoder Only:第 2 章中所述的原始 Transformer 包含編碼器和解碼器堆疊,第 5 章,透過 BERT 進行微調,介紹了 BERT,一個僅編碼器的堆疊,本章將介紹僅解碼器堆疊,您可能會問自己,什麼數學邏輯或證明導致選擇這些配置,事實上是毫無邏輯,Transformer 模型的開發涉及經驗數據驅動的見解、硬體約束和評估,這解釋了為什麼它們會透過建築師的直覺和創造性思維不斷發展。


  • Scale:規模仍然是 Transformer 的關鍵特徵,正如您將在本節中發現的那樣,GPT 模型的大小有所增加,為什麼?目標是捕獲單字和上下文之間的許多依賴關係,根據上下文,一個字可以有多種不同的意思,例如,動詞 eat 看起來很簡單,但我們很快就發現有人可以吃某物,或者某物可以吃,有人可能想吃,不吃,或者也許吃,這個清單幾乎是無窮無盡的!我們可以建立許多參數來表達這些微妙之處,那麼問題就變成了找到正確數量的參數,太多的參數可能成本高昂且無用,參數太少可能會降低準確性,透過反覆試驗可以獲得正確數量的參數。


  • Task Generalization:如果一個模型是針對特定任務進行訓練的,那麼它就是特定於某任務的,然而,當面對潛在的數百個任務時,我們無法想像創造數百個特定於任務的模型!這就是 OpenAI GPT 模型等生成式 AI 模型的用武之地,Transformer 已經在龐大的資料集上進行了訓練,透過設計 Prompt 開始句子,其他人或 GPT 將透過產生「回應」來繼續句子。


  • New Terminology:隨著最新技術的出現,新名詞不斷出現,例如大型語言模型 (LLM)、生成式人工智慧 (Generative AI) 和基礎模型 (Foundation Models),不要讓自己被這些術語淹沒,就像其他新名詞一樣,要習慣它們以及它們所代表的概念,例如,OpenAI GPT 模型現在擁有數十億個參數來處理自然語言,因此,它們是“大型語言模型”,GPT 模型可以繼續一個句子,這解釋了為什麼它們是生成式 AI 模型,GPT 模型可以處理文字、影像和聲音,我們可以根據他們的能力建立數百個任務,這使它們成為我們可以用來建立其他系統的基礎模型。
avatar-img
168會員
441內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 本章涵蓋以下主題: General Purpose Technologies (GPT) 模型做為通用技術的興起與傳播 OpenAI GPT 模型的架構 從 Fe
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 2022 年 11 月,OpenAI ChatGPT 進入主流媒體,引發共鳴,報紙、電視頻道和社群媒體紛紛湧入 OpenAI 的 ChatGPT 網站,關於 ChatG
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 本章涵蓋以下主題: General Purpose Technologies (GPT) 模型做為通用技術的興起與傳播 OpenAI GPT 模型的架構 從 Fe
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 2022 年 11 月,OpenAI ChatGPT 進入主流媒體,引發共鳴,報紙、電視頻道和社群媒體紛紛湧入 OpenAI 的 ChatGPT 網站,關於 ChatG
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 32中,展示了OpenAI的API如何使用,儘管 API 可以滿足許多需求,但它們也有其限制,例如,多用途 API 可能在所有任務
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 生成式人工智慧模糊了雲端平台、框架、函式庫、語言和模型之間的界線,以下展開幾項事實: OpenAI 部署了一個Transformer API,幾乎不需要程式設計。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20以及AI說書 - 從0開始 - 21中,闡述眾人目前對生成式AI的認知謬誤。 現在我們來談談生成式AI的根基 - Fou
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 32中,展示了OpenAI的API如何使用,儘管 API 可以滿足許多需求,但它們也有其限制,例如,多用途 API 可能在所有任務
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 生成式人工智慧模糊了雲端平台、框架、函式庫、語言和模型之間的界線,以下展開幾項事實: OpenAI 部署了一個Transformer API,幾乎不需要程式設計。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20以及AI說書 - 從0開始 - 21中,闡述眾人目前對生成式AI的認知謬誤。 現在我們來談談生成式AI的根基 - Fou
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference