植物形成層的雙人舞

更新於 發佈於 閱讀時間約 4 分鐘


在植物的莖幹中,有一個神奇的工廠叫做形成層(vascular cambium)。形成層負責產生木質部(xylem)與韌皮部(phloem),讓植物可以運輸水分與養分。


每年,形成層都會產生一些新的木質部與韌皮部。為什麼要這樣做呢?這是因為隨著時間過去,活的細胞(韌皮部)會死亡,死的細胞(木質部)也會變得不堪用。韌皮部雖然是由活細胞構成,但是為了提升運輸養分的效率,韌皮部的細胞核與胞器在分化的最後階段會被移除;這樣的細胞是不是很像我們的紅血球呢?我們的紅血球只能活90-120天,而韌皮部的細胞也也不能存活很久,必須時常更新。另一方面,木質部雖然是死細胞,但是在運輸水分的過程中,會因為負壓而產生氣泡,導致木質部損壞。因此,形成層必須不斷分裂與分化,產生新的木質部與韌皮部,用來替換老廢無用的部分。


但是,在分裂與分化的過程中,形成層這個工廠是如何運作,才能產生不多不少的木質部與韌皮部,還能維持足夠數量的形成層呢?其實,形成層這個工廠的運作,就像一支精密編排的舞曲。


故事從韌皮部開始。韌皮部就像一個信號發射站,不斷產生一種叫做TDIF的信號分子。這些TDIF就像是跳舞的邀請函,從韌皮部飄出,向著木質部的方向擴散。


在木質部這邊,則有一群特殊的接收者叫做PXY。它們就像是熱情的舞伴,一看到TDIF就立刻上前邀舞。這些PXY不只是要和TDIF跳舞,還要確保TDIF不會滿場飛。就像是在舞會上,每個舞伴都要留在指定的舞池區域一樣。


當TDIF和PXY相遇共舞時,他們會發出一個特殊的信號,來呼喚CAIL家族的成員們:PLT3、PLT5、PLT7和ANT。這些CAIL家族成員就像是舞蹈教練,他們的主要工作包括鼓勵細胞繼續跳舞(分裂)以及阻止細胞離開舞池(保持未分化狀態)。


但這支舞曲還有另外一個重要的指揮者:生長素(auxin)。生長素就像是舞會的總導演,它可以指揮HD-ZIPIII的表演讓木質部產生、調控PXY的表演時機,以及影響ANT的舞步。


所以,整個舞會的秩序,就靠這些舞伴之間的默契來維持。韌皮部知道要發出多少邀請函(TDIF)、PXY清楚要邀請多少舞伴、CAIL家族明白要教多少人跳舞,而生長素掌握整體的節奏。


如果邀請函(TDIF)發太多,舞池會亂成一團,產生很多的未分化細胞;要是舞伴(PXY)太少,則無法控制舞池範圍,舞池一樣會亂糟糟地。若CAIL家族不在場,就會變成沒人教新手跳舞,未分化細胞就會變少。


這就是為什麼植物要如此精確地控制這支維管組織的舞曲,確保每個細胞都在對的時間,跳對舞步,站對位置,才能譜出生命成長的美妙樂章。


參考文獻:


Gugan Eswaran et al. ,Identification of cambium stem cell factors and their positioning mechanism. Science386,646-653(2024).DOI:10.1126/science.adj8752


留言
avatar-img
留言分享你的想法!
❦ 莊小昕-avatar-img
2024/11/10
謝謝老師分享!您形容得真傳神!這樣艱澀的科學知識也變得溫暖了呢!
avatar-img
老葉報報
200會員
640內容數
主要介紹關於植物的新資訊,但是也會介紹一些其他的。 版主在大學教植物生理學,也教過生物化學。 如有推薦書籍需求,請e-mail:susanyeh816@gmail.com
老葉報報的其他內容
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
大麥曾經是人類重要的糧食之一,雖然現在食用的人並不多,但依然是重要的動物飼料原料與釀造作物之一。因此,大麥的產量當然重要。 大麥的產量由它的花序,也就是我們熟悉的麥穗來決定。有趣的是,科學家發現大麥花序的形態,其實是由一套名叫CLAVATA訊息傳遞系統負責的喔!
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/29
提到歷史上的群眾狂熱,大家很難不去想到發生在十七世紀的「鬱金香熱」。當時不知道為何,鬱金香的球莖忽然身價百倍,大家瘋了似地搶購,但是除了少數真正的園藝愛好者之外,絕大部分的民眾都只是把它當作投資。 當時最熱門的,是這種有條紋的鬱金香;後來知道,這種鬱金香是被病毒感染。 但是,為何病毒感染會製造圖案?
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
2025/04/28
植物進行光合作用時,主要使用可見光。傳統上,科學家認為超過700奈米的長波光(也就是所謂的「紅外光」)能量太低,無法推動植物光合作用中的關鍵氧化還原反應。因此,「700奈米」被視為光合作用的紅色極限(red limit)。 不過,最近科學家們在藍綠菌中找到了突破點!
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
介紹朋友新開的蝦皮選物店『10樓2選物店』,並分享方格子與蝦皮合作的分潤計畫,註冊流程簡單,0成本、無綁約,推薦給想增加收入的讀者。
Thumbnail
當花朵、葉子或果實自然脫落後,內部的非表皮細胞會暴露在外部環境中。過去認為,植物在器官脫落前,就會以木栓質與木質素保護這些新表面;但最近的研究發現,其實並不是這樣喔!而是直接把嫩嫩的植物細胞就這樣暴露在空氣中! 不過,過一陣子,這些細胞就變成表皮細胞了...這是怎麼變的呢?來看看!
Thumbnail
當花朵、葉子或果實自然脫落後,內部的非表皮細胞會暴露在外部環境中。過去認為,植物在器官脫落前,就會以木栓質與木質素保護這些新表面;但最近的研究發現,其實並不是這樣喔!而是直接把嫩嫩的植物細胞就這樣暴露在空氣中! 不過,過一陣子,這些細胞就變成表皮細胞了...這是怎麼變的呢?來看看!
Thumbnail
植物會需要幫忙癒合傷口?為什麼要幫忙植物癒合傷口? 雖然植物再生能力很強,但通常僅限於頂端分生組織;其他部分則不一定有那麼厲害。 但是,有傷口不癒合,可能會導致病菌入侵,影響植物的健康與產量。 最近有研究團隊發現,有方法可以幫忙植物癒合傷口喔! 秘密就在「椰果」裡!
Thumbnail
植物會需要幫忙癒合傷口?為什麼要幫忙植物癒合傷口? 雖然植物再生能力很強,但通常僅限於頂端分生組織;其他部分則不一定有那麼厲害。 但是,有傷口不癒合,可能會導致病菌入侵,影響植物的健康與產量。 最近有研究團隊發現,有方法可以幫忙植物癒合傷口喔! 秘密就在「椰果」裡!
Thumbnail
植物的根毛是由根的表皮細胞突起形成的單細胞構造,幫助植物吸收土壤中的水分與養分。根毛比頭髮還細的,但是對植物卻非常重要! 最近有研究團隊發現,溫度會影響根毛生長,但是,到底溫度怎麼影響根毛的生長呢?他們做了好多實驗,發現案情一點也不單純喔!
Thumbnail
植物的根毛是由根的表皮細胞突起形成的單細胞構造,幫助植物吸收土壤中的水分與養分。根毛比頭髮還細的,但是對植物卻非常重要! 最近有研究團隊發現,溫度會影響根毛生長,但是,到底溫度怎麼影響根毛的生長呢?他們做了好多實驗,發現案情一點也不單純喔!
Thumbnail
根毛(root hair)是植物根部與外界交換物質的重要構造,由植物根部的表皮細胞延伸而成。別小看根毛細細的(直徑約10微米)又是單細胞,植物根部吸收的水分與礦物質幾乎都是由根毛吸收的。 但是,到底有那些因素可以促進根毛生長呢?
Thumbnail
根毛(root hair)是植物根部與外界交換物質的重要構造,由植物根部的表皮細胞延伸而成。別小看根毛細細的(直徑約10微米)又是單細胞,植物根部吸收的水分與礦物質幾乎都是由根毛吸收的。 但是,到底有那些因素可以促進根毛生長呢?
Thumbnail
對陸生植物來說,運輸系統是非常非常重要的。導管(xylem)可以把植物從土壤中吸收的水分與礦物質送到地面上的莖與葉,提供葉片進行光合作用與其他合成反應所需要的原料。 但是,導管是如何從植物的頂端分生組織發育而來的?最近的研究,發現了一個研究,有了一些有趣的發現喔!
Thumbnail
對陸生植物來說,運輸系統是非常非常重要的。導管(xylem)可以把植物從土壤中吸收的水分與礦物質送到地面上的莖與葉,提供葉片進行光合作用與其他合成反應所需要的原料。 但是,導管是如何從植物的頂端分生組織發育而來的?最近的研究,發現了一個研究,有了一些有趣的發現喔!
Thumbnail
玩過插枝嗎?植物最讓人覺得厲害的地方就是,只要剪下一條枝條插進土裡,過一段時間就會長成一株新的植物。 是否想過,為什麼新的根總是從枝條切斷處長出來,而不是更高的地方呢?最近的研究,解開了這個謎題。
Thumbnail
玩過插枝嗎?植物最讓人覺得厲害的地方就是,只要剪下一條枝條插進土裡,過一段時間就會長成一株新的植物。 是否想過,為什麼新的根總是從枝條切斷處長出來,而不是更高的地方呢?最近的研究,解開了這個謎題。
Thumbnail
我真是看樹到了一個著迷的地步。 從樹幹的粗細,以及樹皮的濕潤程度,來推想這棵樹可能經歷了哪些氣候。再往上看看樹幹上有沒有攀附藤蔓植物,這通常發生在較粗壯的樹身上,但究竟是什麼原因讓某些樹受到藤蔓植物的青睞,我並沒參透。 之前聽一個廣播節目,介紹一個職業,叫做樹醫生,她說某些樹會分泌酵素來抵禦有害
Thumbnail
我真是看樹到了一個著迷的地步。 從樹幹的粗細,以及樹皮的濕潤程度,來推想這棵樹可能經歷了哪些氣候。再往上看看樹幹上有沒有攀附藤蔓植物,這通常發生在較粗壯的樹身上,但究竟是什麼原因讓某些樹受到藤蔓植物的青睞,我並沒參透。 之前聽一個廣播節目,介紹一個職業,叫做樹醫生,她說某些樹會分泌酵素來抵禦有害
Thumbnail
休眠期後塊根植物仍然沒有生命跡象?並不代表已死亡。也許它在偷偷地長根,當儲備足夠的養份後才會迅速生長,一下子枝繁葉茂。
Thumbnail
休眠期後塊根植物仍然沒有生命跡象?並不代表已死亡。也許它在偷偷地長根,當儲備足夠的養份後才會迅速生長,一下子枝繁葉茂。
Thumbnail
多數植物生長從幼年期到成熟期,最重要的差別是「開花能力」,當然還是會有一些植物時間差不多了還不開花,需要適當的環境處理,才能達到正確的開花條件,也有一些植物生長過於旺盛便不開花。
Thumbnail
多數植物生長從幼年期到成熟期,最重要的差別是「開花能力」,當然還是會有一些植物時間差不多了還不開花,需要適當的環境處理,才能達到正確的開花條件,也有一些植物生長過於旺盛便不開花。
Thumbnail
上一篇文章提到氣孔的保衛細胞在吸水的時候會膨脹,這時所產生的力量稱為「膨壓」,膨壓高就能讓氣孔張開。不過,膨壓不只存在於氣孔四周,而是在植物細胞內隨處可見。 這股壓力關係著植物的水分平衡,包括幼莖和葉子就是由這股壓力支撐著,植物藉由吸水來保持膨壓,而膨壓消失時,這些器官就會萎縮,植物因此萎凋。
Thumbnail
上一篇文章提到氣孔的保衛細胞在吸水的時候會膨脹,這時所產生的力量稱為「膨壓」,膨壓高就能讓氣孔張開。不過,膨壓不只存在於氣孔四周,而是在植物細胞內隨處可見。 這股壓力關係著植物的水分平衡,包括幼莖和葉子就是由這股壓力支撐著,植物藉由吸水來保持膨壓,而膨壓消失時,這些器官就會萎縮,植物因此萎凋。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News