藍綠菌大變身:陸生植物的葉綠體演化

更新於 發佈於 閱讀時間約 5 分鐘

若要說世界上最重要的胞器是什麼,葉綠體(chloroplast)肯定是第一。植物因為有葉綠體,所以能進行光合作用,產生許多大大小小的糖與其它分子,用來合成各式各樣的分子;然後動物吃植物,把植物的分子消化後重組成自己需要的分子。It’s the food chain!


關於葉綠體的起源,歷經多年的研究,科學家們終於知道,陸生植物的「色素體」(plastid,葉綠體只是色素體的一種)源於藍綠菌(Cyanobacteria)。


藍綠菌是一種沒有粒線體的原核生物。它利用類似葉綠體的色素體結構來進行光合作用,滿足自己對能量的需求。


透過觀察發現,陸生植物的葉綠體具有雙層膜結構,與藍綠菌相似;陸生植物的葉綠體有自己的DNA,且與藍綠菌的基因體相似。另外,陸生植物的葉綠體的光合作用機制與藍綠菌相似,而且科學家也發現,藍綠菌的一些基因在演化過程中轉移到陸生植物的核基因體中。


到底藍綠菌怎麼變成葉綠體的?科學家們推測,大約在10億年前,有一個古老的藍綠菌被真核細胞吞噬(!),但是,這個藍綠菌並沒有被消化成「春泥」,而是在宿主細胞中活了下來,逐漸演化而成為今天的葉綠體。這就是所謂的初級內共生(primary endosymbiosis)。


這次的初級內共生事件產生了所謂的古質體生物(Archaeplastida),分為三個主要類群:陸生植物(綠色植物)、紅藻、單胞藻(glaucophytes)。它們都是真核生物!


至於藍綠菌,在這整個過程中發生什麼事呢?隨著內共生關係的建立與發展,藍綠菌的基因體發生了大量簡化。不需要的基因被刪除,有些基因則轉移到宿主細胞核中;另外,為了能與宿主順暢地溝通,還發展出了複雜的蛋白質運輸系統。而且,色素體的功能重點也從能量供應轉變為固碳產糖。


為了要證明這些色素體在演化的過程中的確發生了角色轉變,研究團隊將紅藻與陸生植物的色素體的ATP轉運蛋白轉入藍綠菌,觀察ATP的運輸方向。


ATP轉運蛋白是什麼?它很像電動車的電池交換站。當細胞執行任務時,需要消耗ATP,產生ADP;而這些ADP會透過ATP轉運蛋白運入產生ATP的胞器,用來做為合成ATP的原料。ATP轉運蛋白每運入一個ADP,就會運出一個ATP。是不是很像電池交換站?


他們發現,當加入的是紅藻的版本時,外部ATP濃度顯著上升(比對照組高出約2.4倍);但是若加入的是陸生植物版本,則外部ATP迅速減少,而且幾乎檢測不到ATP輸出。這意味著,紅藻與陸生植物的色素體的功能有不同。


另外,研究團隊還做了功能驗證實驗。他們設計了酵母菌-藍綠菌共生系統,使用有缺陷的、必須依賴外部ATP才能生存的酵母菌。結果有紅藻轉運蛋白的藍綠菌能維持穩定共生關係(24次分裂),但是有陸生植物轉運蛋白的藍綠菌卻僅能維持短暫共生(6次分裂)。


這些結果告訴我們,隨著色素體與宿主的內共生發展下去,色素體的功能的確已經從供應能量為主逐漸轉為供應碳水化合物了。


不過,可別以為陸生植物的色素體並不供應ATP給自己的細胞喔!根據研究,陸生植物的色素體(葉綠體)所產生的ATP,除了自用,也會提供給細胞使用。所以,除了少數(如活躍生長的組織、種子萌發時期、根尖細胞以及需要大量能量的特化細胞)的植物細胞,大部分陸生植物的粒線體都比較少。


所以,透過研究不同生物的色素體,研究團隊讓我們得知,色素體的角色在演化過程中經歷了轉變,從一開始的提供能量為主轉為提供糖為主。不知道這個轉變,是否與高等植物能「霸佔」地球有關呢?畢竟這麼一來,能量來源變得更多元了!


參考文獻:


De, B. C., Cournoyer, J. E., Gao, Y.-l., Wallace, C. L., Bram, S., & Mehta, A. P. (2024). Photosynthetic directed endosymbiosis to investigate the role of bioenergetics in chloroplast function and evolution. Nature Communications, 15, Article 10622. https://doi.org/10.1038/s41467-024-54051-1


avatar-img
144會員
374內容數
主要介紹關於植物的新資訊,但是也會介紹一些其他的。 版主在大學教植物生理學,也教過生物化學。 如有推薦書籍需求,請e-mail:susanyeh816@gmail.com
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
老葉報報 的其他內容
植物要生長,細胞要長大。但是植物有細胞壁,細胞要怎麼突破細胞壁的限制來長長呢? 答案是:生長素造成細胞壁酸化,然後細胞就可以延長,這是所謂的「酸生長」機制。 但是,植物是如何演化出「酸生長」機制的?最近的研究發現,竟然是從輪藻開始就有了!
在《真確》這本書裡面點出了非常重要的「十大直覺偏誤」,其中對我們影響最大的是「恐懼」(Fear)了。 但是,最近的研究發現,除了「恐懼」,「憤怒」也會讓我們失去理智,成為傳播謠言的幫手(幫凶?)!
提到蕨類(fern),大家首先應該就會想到那個捲曲的新芽!那個捲曲的新芽被稱為「shepherd's crook」或是「fiddlehead」。 不過,這個捲曲的構造並不是所有的蕨類都有的喔!英國的研究團隊查閱文獻時注意到這件事,於是決定把收藏的化石都翻出來看,竟然有了意外的發現!
前陣子,看到有人分享在期刊上發現了一篇論文,題目是《在土星的神經外科手術》(Practice of neurosurgery on Saturn)。我一開始還以為是請AI合成圖片的,但是去查了一下,還真有! 整篇文章其實根本就是一篇科幻小說,我還真好奇他怎麼讓文章被接受的?
我們生活中無所不在的玉米,其實發源於墨西哥! 但是,從墨西哥橫空出世以後,玉米是怎麼來到美國的?是坐車來的,還是走路來的?(誤) 關於玉米如何到達美國有兩種說法,最近的研究發現,玉米應該是穿過大平原來美國的喔! 另外,關於玉米口感的篩選,可是從古到今從來沒放下過呢!
植物為了要防止自己曬傷,發展出了一套很複雜的「防曬」,被稱謂NPQ(非光化學淬滅)。 雖然NPQ可以防止植物曬傷,但是當光線變弱時,NPQ若沒有及時關掉,也會影響植物光合作用的效率。 最近有研究團隊,找到了可以快速關掉NPQ的基因,讓植物可以長得又高又壯喔!
植物要生長,細胞要長大。但是植物有細胞壁,細胞要怎麼突破細胞壁的限制來長長呢? 答案是:生長素造成細胞壁酸化,然後細胞就可以延長,這是所謂的「酸生長」機制。 但是,植物是如何演化出「酸生長」機制的?最近的研究發現,竟然是從輪藻開始就有了!
在《真確》這本書裡面點出了非常重要的「十大直覺偏誤」,其中對我們影響最大的是「恐懼」(Fear)了。 但是,最近的研究發現,除了「恐懼」,「憤怒」也會讓我們失去理智,成為傳播謠言的幫手(幫凶?)!
提到蕨類(fern),大家首先應該就會想到那個捲曲的新芽!那個捲曲的新芽被稱為「shepherd's crook」或是「fiddlehead」。 不過,這個捲曲的構造並不是所有的蕨類都有的喔!英國的研究團隊查閱文獻時注意到這件事,於是決定把收藏的化石都翻出來看,竟然有了意外的發現!
前陣子,看到有人分享在期刊上發現了一篇論文,題目是《在土星的神經外科手術》(Practice of neurosurgery on Saturn)。我一開始還以為是請AI合成圖片的,但是去查了一下,還真有! 整篇文章其實根本就是一篇科幻小說,我還真好奇他怎麼讓文章被接受的?
我們生活中無所不在的玉米,其實發源於墨西哥! 但是,從墨西哥橫空出世以後,玉米是怎麼來到美國的?是坐車來的,還是走路來的?(誤) 關於玉米如何到達美國有兩種說法,最近的研究發現,玉米應該是穿過大平原來美國的喔! 另外,關於玉米口感的篩選,可是從古到今從來沒放下過呢!
植物為了要防止自己曬傷,發展出了一套很複雜的「防曬」,被稱謂NPQ(非光化學淬滅)。 雖然NPQ可以防止植物曬傷,但是當光線變弱時,NPQ若沒有及時關掉,也會影響植物光合作用的效率。 最近有研究團隊,找到了可以快速關掉NPQ的基因,讓植物可以長得又高又壯喔!
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
對陸生植物來說,運輸系統是非常非常重要的。導管(xylem)可以把植物從土壤中吸收的水分與礦物質送到地面上的莖與葉,提供葉片進行光合作用與其他合成反應所需要的原料。 但是,導管是如何從植物的頂端分生組織發育而來的?最近的研究,發現了一個研究,有了一些有趣的發現喔!
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
自然界植物的神秘力量 生命之花與台灣百合圖騰 ★宇宙∣植物∣人類.在愛的秩序裏共生共存 植物包含一切知識,陽性與陰性,無所遺漏。 人以靈性的觀點進入植物的世界,我們馬上如同從前有著天眼通洞察力般地可以成為世界各種實像的主人,但這種天眼通的能力後來被遺忘了。 ▲植物使得他們的根深入地底,如果真
Thumbnail
對絕大部分的植物來說,進行光合作用是最重要的事,而要進行光合作用就需要葉綠體(chloroplast)。所以,葉綠體能不能正常發育,對植物非常重要。 過去的研究發現一個稱為GLK的轉錄因子(transcription factor),對葉綠體發育很重要。最近又發現了更多的重要基因喔!
Thumbnail
豆科植物會透過與根瘤菌合作來固氮,這是數百年前就已經知道的事實了;但是這兩種生物是如何進行互動,到現在還是不能完全明白。 許多賀爾蒙都與根瘤發育有關,最近劍橋大學的研究團隊,使用了新技術,觀察吉貝素對根瘤發育的影響。
Thumbnail
今天要跟大家介紹「菌寄生植物」,這類的植物靠著真菌吃穿喝,很特別喔! 在「菌寄生植物」中,有些是完全寄生,也就是說,它們完全不進行光合作用。 但是,這樣的植物,竟然還有葉綠體!為什麼呢?
Thumbnail
有些植物(如豆科)會與土壤中的細菌(如根瘤菌)形成根瘤(nodule)來幫助植物獲取氮。雖然根瘤可以供應植物氮素,但是要形成與維持根瘤植物也要消耗自己的養分,因此,保持適當數目的根瘤是很重要的。最近的一個研究,又發現了更多關於植物如何維持適當數目根瘤的機制。
Thumbnail
目前主流認為開花植物(被子植物)是出現在侏儸紀到白堊紀早期(有些人認為更早),昆蟲協助植物授粉也被認為是發生在開花植物出現之後,但近年來的化石發現這樣的共生現象早在二疊紀的裸子植物就已存在。以往要從化石了解古生代或中生代昆蟲授粉的資訊都是由間接的途徑得知,如植物的毬果、花朵的形態適合蟲媒或者昆蟲的口
Thumbnail
整理相簿時,看見去年11月拍了,卻忘了PO出來的圖書館主題展出;種子華麗轉身大改造。 小小的種子,肩負著傳承世代的使命。為了讓物種生生不息,種子因循生長環境,演化出獨特的外型與傳播方式。 模樣討喜的種子相當受歡迎,於近年興起一股收藏熱潮,也常作為手工藝素材。 當種子被帶離生長環境,成為人類的收
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
對陸生植物來說,運輸系統是非常非常重要的。導管(xylem)可以把植物從土壤中吸收的水分與礦物質送到地面上的莖與葉,提供葉片進行光合作用與其他合成反應所需要的原料。 但是,導管是如何從植物的頂端分生組織發育而來的?最近的研究,發現了一個研究,有了一些有趣的發現喔!
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
植物需要氣孔(stoma)與外界的大氣進行交換才能取得足夠的二氧化碳與氧氣。另外,植物還需要進行蒸散作用來帶動導管(木質部xylem)裡的水分,才能運輸礦物質與糖。 但是,氣孔對植物的影響到底是怎麼樣的?最近的研究,有了一些有趣的發現。
Thumbnail
自然界植物的神秘力量 生命之花與台灣百合圖騰 ★宇宙∣植物∣人類.在愛的秩序裏共生共存 植物包含一切知識,陽性與陰性,無所遺漏。 人以靈性的觀點進入植物的世界,我們馬上如同從前有著天眼通洞察力般地可以成為世界各種實像的主人,但這種天眼通的能力後來被遺忘了。 ▲植物使得他們的根深入地底,如果真
Thumbnail
對絕大部分的植物來說,進行光合作用是最重要的事,而要進行光合作用就需要葉綠體(chloroplast)。所以,葉綠體能不能正常發育,對植物非常重要。 過去的研究發現一個稱為GLK的轉錄因子(transcription factor),對葉綠體發育很重要。最近又發現了更多的重要基因喔!
Thumbnail
豆科植物會透過與根瘤菌合作來固氮,這是數百年前就已經知道的事實了;但是這兩種生物是如何進行互動,到現在還是不能完全明白。 許多賀爾蒙都與根瘤發育有關,最近劍橋大學的研究團隊,使用了新技術,觀察吉貝素對根瘤發育的影響。
Thumbnail
今天要跟大家介紹「菌寄生植物」,這類的植物靠著真菌吃穿喝,很特別喔! 在「菌寄生植物」中,有些是完全寄生,也就是說,它們完全不進行光合作用。 但是,這樣的植物,竟然還有葉綠體!為什麼呢?
Thumbnail
有些植物(如豆科)會與土壤中的細菌(如根瘤菌)形成根瘤(nodule)來幫助植物獲取氮。雖然根瘤可以供應植物氮素,但是要形成與維持根瘤植物也要消耗自己的養分,因此,保持適當數目的根瘤是很重要的。最近的一個研究,又發現了更多關於植物如何維持適當數目根瘤的機制。
Thumbnail
目前主流認為開花植物(被子植物)是出現在侏儸紀到白堊紀早期(有些人認為更早),昆蟲協助植物授粉也被認為是發生在開花植物出現之後,但近年來的化石發現這樣的共生現象早在二疊紀的裸子植物就已存在。以往要從化石了解古生代或中生代昆蟲授粉的資訊都是由間接的途徑得知,如植物的毬果、花朵的形態適合蟲媒或者昆蟲的口
Thumbnail
整理相簿時,看見去年11月拍了,卻忘了PO出來的圖書館主題展出;種子華麗轉身大改造。 小小的種子,肩負著傳承世代的使命。為了讓物種生生不息,種子因循生長環境,演化出獨特的外型與傳播方式。 模樣討喜的種子相當受歡迎,於近年興起一股收藏熱潮,也常作為手工藝素材。 當種子被帶離生長環境,成為人類的收