AI系列-1: RAG+LLM:下一代知識引擎的挑戰與突破

更新 發佈閱讀 3 分鐘


近年來,AI 技術的飛速發展,讓「問答機器人」成為大眾關注的焦點。RAG(檢索增強生成)+ LLM(大型語言模型)技術,更被視為下一代知識引擎的基石,有望顛覆我們獲取資訊的方式。然而,RAG + LLM 真的是一個簡單的「即插即用」工具嗎?它是否能夠像我們期待的那樣,隨時隨地提供精準、全面的答案?

RAG + LLM 的核心概念,是結合 LLM 強大的語言生成能力,以及外部資料庫的知識檢索能力。透過這種方式,LLM 不再只是依賴訓練資料中的知識,而是能夠即時存取外部資訊,產生更精準、更全面的答案。

案例分析:

以醫療領域為例,RAG + LLM 有望協助醫生快速檢索最新的醫學研究、臨床指南和患者病歷,從而提供更精準的診斷和治療方案。

在金融領域,RAG + LLM 可以幫助分析師快速檢索市場數據、財務報告和新聞資訊,從而做出更明智的投資決策。

然而,理想很豐滿,現實卻很骨感。在實際應用中,我們發現 RAG + LLM 的複雜度,遠遠超出我們的想像。它不僅僅是將資料庫連接到 LLM,更涉及到以下幾個關鍵挑戰:

向量空間的建立與維護:

為了讓 LLM 能夠快速找到相關資訊,我們需要將外部資料庫轉換成向量空間。

這個過程需要大量的資料、專業的技術,以及持續的維護。

根據研究,一個高品質的向量空間,可以將 RAG 系統的檢索準確度提高 30% 以上。

在今天的嘗試中,我們使用了 SentenceTransformer 模型,將我們的 rag_she.json 資料集轉換成 768 維的向量空間。

檢索策略的設計:

如何設計有效的檢索策略,確保 LLM 能夠找到最相關的資訊,是一個複雜的問題。

不同的檢索策略,會對 RAG 系統的效能產生重大影響。

例如,使用混合檢索策略(結合關鍵字檢索和向量檢索),可以提高檢索的全面性和準確性。

我們嘗試了使用 FAISS 函式庫建立向量索引,並將其與 Facebook 的 RAG 模型結合使用。

LLM 的適應性:

LLM 需要能夠有效地利用檢索到的資訊,並將其整合到生成的答案中。

這涉及到複雜的自然語言處理和推理能力。

目前,LLM 在處理複雜推理和多輪對話方面,仍然存在一定的挑戰。

我們發現,即使我們提供了正確的檢索結果,LLM 也未必能夠生成流暢、自然的答案。

在我們的實作過程中,我們嘗試使用 Facebook 的 RAG 模型,連接我們自己的資料庫。然而,我們發現模型始終無法正確載入我們的資料,而是不斷嘗試載入預設的 wiki_dpr 資料集。這讓我們意識到,RAG + LLM 的複雜度,可能遠遠超出我們的預期。

熱門名詞:

向量嵌入(Vector Embedding):

將文字、圖像等資料轉換成高維空間中的向量。

向量索引(Vector Index):

用於快速搜索相似向量的資料結構。

例如,FAISS、Annoy 和 HNSW。

混合檢索(Hybrid Retrieval):

結合關鍵字檢索和向量檢索的檢索策略。

例如,使用 BM25 進行關鍵字檢索,使用 FAISS 進行向量檢索。

 

留言
avatar-img
管仲的沙龍
9會員
26內容數
養貓,音樂,經絡與預防醫學,企業經營管理,大國博弈,區塊鏈
管仲的沙龍的其他內容
2025/03/07
本文探討2025年AI代理技術的突破性發展,尤其以Monica.im公司發布的Manus為例,分析其對產業及資本主義體系可能造成的深遠影響。文章回顧了自2022年以來AI產業的演進,並剖析關鍵玩家及技術趨勢
Thumbnail
2025/03/07
本文探討2025年AI代理技術的突破性發展,尤其以Monica.im公司發布的Manus為例,分析其對產業及資本主義體系可能造成的深遠影響。文章回顧了自2022年以來AI產業的演進,並剖析關鍵玩家及技術趨勢
Thumbnail
2025/03/06
本文探討美國政府與企業在資訊產業,尤其開源軟體領域的法律責任。分析「免費」背後的商業策略,及其對全球市場和消費者權益的影響,並以藥品、汽車等產業案例對比,強調資訊產業須承擔法律責任,建立健康、公平的數位生態系統。
Thumbnail
2025/03/06
本文探討美國政府與企業在資訊產業,尤其開源軟體領域的法律責任。分析「免費」背後的商業策略,及其對全球市場和消費者權益的影響,並以藥品、汽車等產業案例對比,強調資訊產業須承擔法律責任,建立健康、公平的數位生態系統。
Thumbnail
2025/03/05
本文探討 RAG + LLM 技術的應用與挑戰,分析 Google、IBM、微軟、AWS 等科技巨頭和開源社群的策略,並提供新進業者和企業在導入 RAG + LLM 系統時的建議,包括重視向量空間建立、選擇合適的 RAG 策略、持續學習和實驗以及資料品質等面向。
Thumbnail
2025/03/05
本文探討 RAG + LLM 技術的應用與挑戰,分析 Google、IBM、微軟、AWS 等科技巨頭和開源社群的策略,並提供新進業者和企業在導入 RAG + LLM 系統時的建議,包括重視向量空間建立、選擇合適的 RAG 策略、持續學習和實驗以及資料品質等面向。
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
RAG(檢索增強生成)+LLM(大型語言模型)技術被視為下一代知識引擎的基石,但實際應用中複雜度遠超預期。本文探討RAG+LLM的關鍵挑戰,包含向量空間建立與維護、檢索策略設計及LLM的適應性。文中分析以醫療、金融領域為例,並提及向量嵌入、向量索引(如FAISS)、混合檢索等熱門名詞與技術。
Thumbnail
RAG(檢索增強生成)+LLM(大型語言模型)技術被視為下一代知識引擎的基石,但實際應用中複雜度遠超預期。本文探討RAG+LLM的關鍵挑戰,包含向量空間建立與維護、檢索策略設計及LLM的適應性。文中分析以醫療、金融領域為例,並提及向量嵌入、向量索引(如FAISS)、混合檢索等熱門名詞與技術。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
本文介紹了檢索增強生成(RAG)技術的概念、運作原理、應用場景以及相關資源。RAG 技術結合檢索和生成的優勢,提升了生成內容的準確性和相關性,同時能有效保護隱私數據。對於希望應用 GPT 技術但擔心數據外洩的企業來說,RAG 是一個理想的解決方案。
Thumbnail
本文介紹了檢索增強生成(RAG)技術的概念、運作原理、應用場景以及相關資源。RAG 技術結合檢索和生成的優勢,提升了生成內容的準確性和相關性,同時能有效保護隱私數據。對於希望應用 GPT 技術但擔心數據外洩的企業來說,RAG 是一個理想的解決方案。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
前言 前幾篇分享了 IBM Watsonx.ai 平台,以及在平台上使用 LLM 完成客戶體驗分析、與LLM串連處理較複雜的問題。在這一篇中,我們想來嘗試使用檢索增強生成(RAG)的技術,RAG 通過整合外部數據來增強基礎模型的回答能力,這不僅能解決模型訓練數據的局限性問題,還可以提供更精準和相關
Thumbnail
前言 前幾篇分享了 IBM Watsonx.ai 平台,以及在平台上使用 LLM 完成客戶體驗分析、與LLM串連處理較複雜的問題。在這一篇中,我們想來嘗試使用檢索增強生成(RAG)的技術,RAG 通過整合外部數據來增強基礎模型的回答能力,這不僅能解決模型訓練數據的局限性問題,還可以提供更精準和相關
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News