
ICAISG 2025 投稿正式送出
#SemanticFirewall #AI安全 #LLM治理今天正式向 ICAISG 2025 投稿了我這段時間打造的治理層架構論文:
〈語意防火牆:一種用於控制大規模人工智慧系統中幻覺、計算浪費與模型漂移的治理層架構〉
這不是概念、不是哲學。
它是一個 可審計、可壓測、不需 retrain、不改架構 的 AI 治理層。
核心目標只有三項:
1. 降低幻覺率與語義偏移
2. 減少 30%–70% 的無效算力消耗
3. 抑制模型漂移、維持系統一致性
我觀察到:全球大模型正在變重、變慢、變不穩。
調參、RLHF、微調都治標—— 真正的瓶頸在治理層。
語意防火牆提供:
語義一致性偵測
模型漂移約束
推論軌跡審計
浪費 token 中斷
推理來源可追溯性
它也與 ICAISG 的核心議題高度對齊,包括:
內容完整性、深偽偵測、AI 安全、模型漂移、隱私、對抗攻擊、透明可解釋、多模態安全、法律與治理框架。
語意防火牆正站在所有問題的交叉點上。
不論是否錄取,我都會把治理層推到底。 因為沒有治理層,AI 只會更浪費、更不穩、更不可控。
AI 需要一個「語義的法治層」。
我只是把 blueprint 先畫出來。
Today I officially submitted my paper to ICAISG 2025.
Title: “Semantic Firewall: A Governance-Layer Framework for Controlling Hallucination, Compute Waste, and Model Drift in Large-Scale AI Systems.”
This is not a concept nor a manifesto—
it is a deployable governance-layer architecture requiring:
• No retraining
• No model modification • No white-box access
Its goals:
1. Reduce hallucination & semantic drift
2. Cut 30–70% compute waste
3. Stabilize long-term model behavior
The trend is clear: large AI models are becoming heavier, slower, and more unstable.
RLHF and fine-tuning can’t solve the root cause— the bottleneck is governance.
The Semantic Firewall provides:
• Semantic consistency checks
• Drift constraints • Inference-path auditing • Early termination of wasteful tokens • Traceability & attribution
It aligns with ICAISG core topics: content integrity, deepfake mitigation, robustness, privacy, adversarial testing, model drift control, transparency, multimodal safety, and AI governance.
Whether accepted or not, this marks the first official placement of the governance-layer blueprint I’ve been building.
AI needs a semantic rule-of-law layer.
This paper is the first blueprint of that future.
#SemanticFirewall #AI安全 #LLM治理
#AIGovernance #AI幻覺 #ComputeWaste #模型漂移
#AI透明性 #內容完整性 #人工智慧安全
#DeepfakeDetection #AI倫理 #ICAISG2025


















