付費限定

使用SPSS進行羅吉斯迴歸

更新於 發佈於 閱讀時間約 1 分鐘

迴歸分析通常用於檢測自變項和依變項之間的線性關係。如果依變項並非連續變項時,就可以改用羅吉斯迴歸,其廣泛用於醫療和企業領域當中。接下來本文將介紹不同種類羅吉斯迴歸(二元/順序/多項式)和SPSS操作方法。




勝算比(Odds ratio)

因為羅吉斯解讀比較不直觀,要學會解讀羅吉斯迴歸,就要先了解勝算比。勝算比表示一個A事件發生的機率比另一個B事件發生的機率的比值。

勝算比的解釋如下:

  • OR > 1:表示 A 和 B 之間存在正相關,即 A 發生的機率在存在 B 時增加。
  • OR < 1:表示 A 和 B 之間存在負相關,即 A 發生的機率在存在 B 時減少。
  • OR = 1:表示 A 和 B 之間不存在關聯。


計算範例:

假設我們找到10個博士正取生,發現2個是女生,8個是男生。

以行動支持創作者!付費即可解鎖
本篇內容共 2794 字、7 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
林源隆-avatar-img
2024/02/15
版主您好,請問可以再細說「二元Logistic」的部分嗎?因為沒有看到原始資料,所以閱讀輸出表格的解釋有點吃力。比較好奇的是羅吉斯迴歸輸出的最後那張表—方程式中的變數,若是多組做LR,每組第一列沒有B、S.E.、Exp(B)的那列,是表示什麼意思呢?我的理解是這組的組間若p>0.01、0.005、0.001,就具有顯著差異(是這樣嗎?),再煩請您解答,謝謝!
Dr. Rover-avatar-img
發文者
2024/02/17
林源隆 我也不知道耶,我也是看國外和教科書研究自己學的
avatar-img
心理博士的筆記本
239會員
134內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
看更多
你可能也想看
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
接續第三章內容,有時候多層次資料不只一個層次,可能具有多種層次,例如:學生屬於某個學校,而學校又屬於某個縣市。本章主要說明三層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解三層次之隨機截距斜率模型概念和操作。
Thumbnail
接續第三章內容,有時候多層次資料不只一個層次,可能具有多種層次,例如:學生屬於某個學校,而學校又屬於某個縣市。本章主要說明三層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解三層次之隨機截距斜率模型概念和操作。
Thumbnail
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
Thumbnail
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
我們將介紹各種類型的信度和統計方法,包含Cohen Kappa 係數、組內相關係數、α係數的SPSS教學。信度的可以使用不同的評估方法來評估。信度對於確定評分標準或量表的一致性和穩定度至關重要。
Thumbnail
我們將介紹各種類型的信度和統計方法,包含Cohen Kappa 係數、組內相關係數、α係數的SPSS教學。信度的可以使用不同的評估方法來評估。信度對於確定評分標準或量表的一致性和穩定度至關重要。
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News