潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式:因素分析探討的處理的是連續類型的潛在變項(因素);潛在類別分析處理的是類別類型的潛在變項(因素)。 如下圖,潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)都在處理的是類別類型的潛在變項。但兩者差異主要在於,潛在類別模式的觀察變項是類別的(例如:是或否);潛在剖面分析的觀察變項是連續的(例如:上網時數)。如果觀察變項同時具有連續和類別呢?那就是混合分析(Mixture Model)。本文將介紹如何使用Mplus進行三種統計方法。 想學Mplus基本操作請看這邊 潛在類別模式