付費限定

用SPSS進行HLM第四章:三層次之隨機截距斜率模型

更新於 發佈於 閱讀時間約 8 分鐘
接續第三章內容,有時候多層次資料不只兩種層次,例如:學生屬於某個學校,學校屬於某個縣市。本章主要說明三層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解三層次之隨機截距斜率模型概念和操作。

ICC計算

同樣道理,如果我們認為資料句有多層次問題,雙層次還無法解決時,就要用ICC檢驗三層次的必要性。Level 2Level 3代表兩個層次是within-group,例如:每個學生都會同時是某格縣市和學校內。也可以自己嘗試看看不用Level 2*Level 3,只用Level 2跑三層次HLM,看看兩者在適配值上的差異,
SPSS語法如下:
mixed Y 
/random = intercept | subject(Level 2*Level 3) 
以行動支持創作者!付費即可解鎖
本篇內容共 3447 字、0 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
你的見面禮 Premium 閱讀權限 只剩下0 小時 0
avatar-img
224會員
124內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
心理博士的筆記本 的其他內容
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
階層線性模式(MLM) 或是多層次模式(HLM)可以說是當代社會科學研究重要的統計方法學。現實中,我們收集到的資料可能巢套在不同層層次的單位當中。這種巢套關係很容易違反資料獨立性的假設導致許多傳統統計方法無法使用,本文將從簡單的公式說明多層次資料的問題,並介紹HLM的概念。
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
多層次資料若使用傳統的中介分析容易導致結果偏誤,所以多層次中介分析旨在解決此問題,本次介紹如何透過MLmed進行多層次中介分析,本文將透過不同案例說明多層次中介分析包含1-1-1 模型和2-1-1模型,也會說明加入調節變項案例,還有多重中介變項案例。每個案例都會講解如何操作和判讀報表。
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
階層線性模式(MLM) 或是多層次模式(HLM)可以說是當代社會科學研究重要的統計方法學。現實中,我們收集到的資料可能巢套在不同層層次的單位當中。這種巢套關係很容易違反資料獨立性的假設導致許多傳統統計方法無法使用,本文將從簡單的公式說明多層次資料的問題,並介紹HLM的概念。
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
多層次資料若使用傳統的中介分析容易導致結果偏誤,所以多層次中介分析旨在解決此問題,本次介紹如何透過MLmed進行多層次中介分析,本文將透過不同案例說明多層次中介分析包含1-1-1 模型和2-1-1模型,也會說明加入調節變項案例,還有多重中介變項案例。每個案例都會講解如何操作和判讀報表。
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
假設您目前即將接任教務主任一職,您想要知道甲班與乙班的學生在整個學期中的學習成果,是甲班較出色,還是乙班的同學較認真?此時,身為教務主任的您,在收集了學生的學期成績後,要如何進行比較,才能公平的判斷出兩班同學的程度差異及同一班的學生,普遍程度都落在哪個成績水準上? 要得到這個問題的答案,最好的方法
Thumbnail
在課程設計上,我往往會以客層設計教學的系統。但我逐漸發現只同一個用系統,除了貼近我自己的成長進程,更方便學習者記得。沒有一個系統是不會隨著人的成長和狀態一起演化的。我在設計新的系統時將以往常用的「四層系統」以及「3+1系統」重新簡單在課程設計筆記中介紹。
📚 每年總有熱心人士彙整「會考落點表」,問題是…『所謂排名前段』學校真的適合這些學生?學生真的適合這些學校?🤔🏫 選讀這些『所謂排名前段』學校,3年後成績真的比較好、競爭力真的比較強?📈 📝 無腦照表依序選填志願,無論辦學績效只要是『公立』就心滿意足了….完全違背政府推動就近入學、繁星計畫
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
一般常見的時間架構分成三個:趨勢級別、分析級別、進場級別。 趨勢級別 週線 or 日線,目的是為了確認整體市場的方向,以及關鍵流動性區域(支撐、壓力位) 分析級別 4H or 1H,目的是確認市場當前方向、公允價值缺口、訂單塊、流動性區域、高期望值交易區域,需要花較多時間來分析。 進場級別
Thumbnail
剛剛看到一篇文章在講,這些年來台灣教育改革,因為採計分制的改變,而從分分必較,改成等級制,讓家長與孩子不要這麼分分必較。透過這種模糊化的策略,讓第二三志願學校也可能收到第一志願的學生,打破「志願取向」的升學考試,也試圖改變每一分都那麼重要的想法。 . 這個好,還是不好呢?真的很難說啊。 .
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
Thumbnail
透過探討指數級增長、常態分布與冪律分布在選擇行業時的應用,強調了分析邊際成本和市場分布特性的重要性。作者挑戰傳統追隨者思維,提倡創新和尋找獨特優勢,並透過服務業例子展示如何應用這些底層邏輯進行前瞻性決策,幫助讀者識別增長機會,制定成功策略。
Thumbnail
本課程為臨護所碩開設,學分為2學分。課程內容包括統計學概論、敘述統計學、電腦在統計上之應用、資料準備、統計推論等。學期作業、考試、評量佔30%至40%,生物統計是基本功,大家加油!
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
假設您目前即將接任教務主任一職,您想要知道甲班與乙班的學生在整個學期中的學習成果,是甲班較出色,還是乙班的同學較認真?此時,身為教務主任的您,在收集了學生的學期成績後,要如何進行比較,才能公平的判斷出兩班同學的程度差異及同一班的學生,普遍程度都落在哪個成績水準上? 要得到這個問題的答案,最好的方法
Thumbnail
在課程設計上,我往往會以客層設計教學的系統。但我逐漸發現只同一個用系統,除了貼近我自己的成長進程,更方便學習者記得。沒有一個系統是不會隨著人的成長和狀態一起演化的。我在設計新的系統時將以往常用的「四層系統」以及「3+1系統」重新簡單在課程設計筆記中介紹。
📚 每年總有熱心人士彙整「會考落點表」,問題是…『所謂排名前段』學校真的適合這些學生?學生真的適合這些學校?🤔🏫 選讀這些『所謂排名前段』學校,3年後成績真的比較好、競爭力真的比較強?📈 📝 無腦照表依序選填志願,無論辦學績效只要是『公立』就心滿意足了….完全違背政府推動就近入學、繁星計畫
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
一般常見的時間架構分成三個:趨勢級別、分析級別、進場級別。 趨勢級別 週線 or 日線,目的是為了確認整體市場的方向,以及關鍵流動性區域(支撐、壓力位) 分析級別 4H or 1H,目的是確認市場當前方向、公允價值缺口、訂單塊、流動性區域、高期望值交易區域,需要花較多時間來分析。 進場級別
Thumbnail
剛剛看到一篇文章在講,這些年來台灣教育改革,因為採計分制的改變,而從分分必較,改成等級制,讓家長與孩子不要這麼分分必較。透過這種模糊化的策略,讓第二三志願學校也可能收到第一志願的學生,打破「志願取向」的升學考試,也試圖改變每一分都那麼重要的想法。 . 這個好,還是不好呢?真的很難說啊。 .
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
Thumbnail
透過探討指數級增長、常態分布與冪律分布在選擇行業時的應用,強調了分析邊際成本和市場分布特性的重要性。作者挑戰傳統追隨者思維,提倡創新和尋找獨特優勢,並透過服務業例子展示如何應用這些底層邏輯進行前瞻性決策,幫助讀者識別增長機會,制定成功策略。
Thumbnail
本課程為臨護所碩開設,學分為2學分。課程內容包括統計學概論、敘述統計學、電腦在統計上之應用、資料準備、統計推論等。學期作業、考試、評量佔30%至40%,生物統計是基本功,大家加油!
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」