付費限定

用SPSS進行HLM第三章:雙層次之隨機截距斜率模型

更新於 發佈於 閱讀時間約 3 分鐘
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。

之前我們已經講解隨機截距模型,若層次2為學校,則是不同學校之間截距有所差異,但是斜率則還是保持不變,若現在改為隨機截距斜率模型,代表則是不同學校之間截距有所差異,不同學校之間斜率則也有差異。代表斜率和截距都採用隨機效果,如下圖顯示:

雙層次之隨機截距斜率模型:2個Level 1和1個Level 2自變項

本範例假設我們有兩個層次,層次1為學生個體,層次2為班級層面。依變項為Y,層次1的自變項有2個,X1和X2是自變項,層次2的自變項為X01。X1/2的斜率和截距具有隨機效果。β 0第一層截距,e是層次1誤差

公式說明

以行動支持創作者!付費即可解鎖
本篇內容共 1327 字、1 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
你的見面禮 Premium 閱讀權限 只剩下0 小時 0
avatar-img
225會員
127內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
心理博士的筆記本 的其他內容
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
階層線性模式(MLM) 或是多層次模式(HLM)可以說是當代社會科學研究重要的統計方法學。現實中,我們收集到的資料可能巢套在不同層層次的單位當中。這種巢套關係很容易違反資料獨立性的假設導致許多傳統統計方法無法使用,本文將從簡單的公式說明多層次資料的問題,並介紹HLM的概念。
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
多層次資料若使用傳統的中介分析容易導致結果偏誤,所以多層次中介分析旨在解決此問題,本次介紹如何透過MLmed進行多層次中介分析,本文將透過不同案例說明多層次中介分析包含1-1-1 模型和2-1-1模型,也會說明加入調節變項案例,還有多重中介變項案例。每個案例都會講解如何操作和判讀報表。
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。雙因子就代表說有兩個自變項(也稱為因子)。例如:我們覺得性別和學歷會影響到物理成績,那性別就是因子(男生和女生)/學歷(國小和高中)
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
階層線性模式(MLM) 或是多層次模式(HLM)可以說是當代社會科學研究重要的統計方法學。現實中,我們收集到的資料可能巢套在不同層層次的單位當中。這種巢套關係很容易違反資料獨立性的假設導致許多傳統統計方法無法使用,本文將從簡單的公式說明多層次資料的問題,並介紹HLM的概念。
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
多層次資料若使用傳統的中介分析容易導致結果偏誤,所以多層次中介分析旨在解決此問題,本次介紹如何透過MLmed進行多層次中介分析,本文將透過不同案例說明多層次中介分析包含1-1-1 模型和2-1-1模型,也會說明加入調節變項案例,還有多重中介變項案例。每個案例都會講解如何操作和判讀報表。
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。雙因子就代表說有兩個自變項(也稱為因子)。例如:我們覺得性別和學歷會影響到物理成績,那性別就是因子(男生和女生)/學歷(國小和高中)
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
【特殊圖表教學目錄傳送門 : EXCEL特殊圖表大合輯 | 持續更新中】 這集要分享增減雙層柱形圖,這個圖表除了可以比較兩組數據之外,還能在上方一併呈現這兩組數據實際的差值。 【🎗️範例展示】 下方黑色與灰色的直條圖:用來比較A到H類別2022年與2023年的資料 下方綠色紅色
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
一般常見的時間架構分成三個:趨勢級別、分析級別、進場級別。 趨勢級別 週線 or 日線,目的是為了確認整體市場的方向,以及關鍵流動性區域(支撐、壓力位) 分析級別 4H or 1H,目的是確認市場當前方向、公允價值缺口、訂單塊、流動性區域、高期望值交易區域,需要花較多時間來分析。 進場級別
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
透過探討指數級增長、常態分布與冪律分布在選擇行業時的應用,強調了分析邊際成本和市場分布特性的重要性。作者挑戰傳統追隨者思維,提倡創新和尋找獨特優勢,並透過服務業例子展示如何應用這些底層邏輯進行前瞻性決策,幫助讀者識別增長機會,制定成功策略。
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
【特殊圖表教學目錄傳送門 : EXCEL特殊圖表大合輯 | 持續更新中】 這集要分享增減雙層柱形圖,這個圖表除了可以比較兩組數據之外,還能在上方一併呈現這兩組數據實際的差值。 【🎗️範例展示】 下方黑色與灰色的直條圖:用來比較A到H類別2022年與2023年的資料 下方綠色紅色
瞭解如何透過Regression實作Classification,使用one-hot vector表示不同的類別,並透過乘上不同的Weight和加上不同的bias來得到三個數值形成向量。同時通過softmax的方式得到最終的y'值,並探討使用Cross-entropy來計算類別的loss。
Thumbnail
  前面說明了所謂「假設檢定」的邏輯,也就是推論統計的基礎。但前面都還只是概念的階段,目前沒有真正進行任何的操作──還沒有提到推論統計的技術。   這篇其實有點像是一個過渡,是將前面的概念銜接到下一篇t分數之間的過程,也可以說是稍微解釋一下t檢定怎麼發展出來的。
Thumbnail
一般常見的時間架構分成三個:趨勢級別、分析級別、進場級別。 趨勢級別 週線 or 日線,目的是為了確認整體市場的方向,以及關鍵流動性區域(支撐、壓力位) 分析級別 4H or 1H,目的是確認市場當前方向、公允價值缺口、訂單塊、流動性區域、高期望值交易區域,需要花較多時間來分析。 進場級別
Thumbnail
這篇文章以簡單易懂的文字和圖片介紹線性混和效應模型,包含其中的元素和意義。除此之外也透過 R 的實作具體呈現操作時的情況。
Thumbnail
 當開啟試算表(EXCEL等)的累加(SUM)及離散度,標準差(STDEV)的運算功能後,逐一統計的累進報票式選票統計表就可以退休了,而且全國一萬七千多所的數據不待一所所列出,就可以用較小選區(例如嘉義市198所,宜蘭縣431所等)的統計過程證明統計結果都是正確的,尤其是將計算式列出(隱藏前面的
Thumbnail
透過探討指數級增長、常態分布與冪律分布在選擇行業時的應用,強調了分析邊際成本和市場分布特性的重要性。作者挑戰傳統追隨者思維,提倡創新和尋找獨特優勢,並透過服務業例子展示如何應用這些底層邏輯進行前瞻性決策,幫助讀者識別增長機會,制定成功策略。
Thumbnail
第一堂學生創新團隊的點評 我們的統計在社會科學裡面,它到底是怎麼樣產生的,我們今天要算這個統計學,要送統計,他們本身要有Raw data,這樣才有辦法進行運用,如:我們要怎麼算平均身高如下是:   「全部身高」除以「人數」等於 每個人幾公分  所以我們要設計如何用電腦計算 ,要「input」