付費限定用SPSS進行HLM第三章:雙層次之隨機截距斜率模型
付費限定

用SPSS進行HLM第三章:雙層次之隨機截距斜率模型

更新於 發佈於 閱讀時間約 1 分鐘

接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。


之前我們已經講解隨機截距模型,若層次2為學校,則是不同學校之間截距有所差異,但是斜率則還是保持不變,若現在改為隨機截距斜率模型,代表則是不同學校之間截距有所差異,不同學校之間斜率則也有差異。代表斜率和截距都採用隨機效果,如下圖顯示:

raw-image

雙層次之隨機截距斜率模型:2個Level 1和1個Level 2自變項

本範例假設我們有兩個層次,層次1為學生個體,層次2為班級層面。依變項為Y,層次1的自變項有2個,X1和X2是自變項,層次2的自變項為X01。X1/2的斜率和截距具有隨機效果。β 0第一層截距,e是層次1誤差

公式說明

以行動支持創作者!付費即可解鎖
本篇內容共 1327 字、1 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
心理博士的筆記本
235會員
133內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言
avatar-img
留言分享你的想法!
心理博士的筆記本 的其他內容
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
階層線性模式(MLM) 或是多層次模式(HLM)可以說是當代社會科學研究重要的統計方法學。現實中,我們收集到的資料可能巢套在不同層層次的單位當中。這種巢套關係很容易違反資料獨立性的假設導致許多傳統統計方法無法使用,本文將從簡單的公式說明多層次資料的問題,並介紹HLM的概念。
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
多層次資料若使用傳統的中介分析容易導致結果偏誤,所以多層次中介分析旨在解決此問題,本次介紹如何透過MLmed進行多層次中介分析,本文將透過不同案例說明多層次中介分析包含1-1-1 模型和2-1-1模型,也會說明加入調節變項案例,還有多重中介變項案例。每個案例都會講解如何操作和判讀報表。
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。雙因子就代表說有兩個自變項(也稱為因子)。例如:我們覺得性別和學歷會影響到物理成績,那性別就是因子(男生和女生)/學歷(國小和高中)
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
階層線性模式(MLM) 或是多層次模式(HLM)可以說是當代社會科學研究重要的統計方法學。現實中,我們收集到的資料可能巢套在不同層層次的單位當中。這種巢套關係很容易違反資料獨立性的假設導致許多傳統統計方法無法使用,本文將從簡單的公式說明多層次資料的問題,並介紹HLM的概念。
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
多層次資料若使用傳統的中介分析容易導致結果偏誤,所以多層次中介分析旨在解決此問題,本次介紹如何透過MLmed進行多層次中介分析,本文將透過不同案例說明多層次中介分析包含1-1-1 模型和2-1-1模型,也會說明加入調節變項案例,還有多重中介變項案例。每個案例都會講解如何操作和判讀報表。
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
變異數分析(Analysis of Variance, ANOVA)是一種統計分析方法,用於檢驗自變項之間不同水平(或組別)是否存在依變項上具有顯著差異。雙因子就代表說有兩個自變項(也稱為因子)。例如:我們覺得性別和學歷會影響到物理成績,那性別就是因子(男生和女生)/學歷(國小和高中)