付費限定

用SPSS進行HLM第二章:雙層次之隨機截距模型

更新 發佈閱讀 2 分鐘


本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。


雙層次之隨機截距模型:一個Level 1固定自變項

公式說明

我先舉一個很簡單的範例,用迴歸公式簡單說明HLM如何分析。假設我們有兩個層次,層次1為學生個體,層次2為班級層面。依變項為Y,層次1的自變項有1個,X1是自變項。β 0第一層截距,β 0 0第二層截距,e是層次1誤差,e0層次2誤差。X1的斜率(β 1)不會受到Level 2影響,所以在Level 2其斜率(β01)=Level 1斜率(β 1),但依變項為Y的截距會受到層次二影響,β 0 0是截距在學校之間的均值 ,e0是截距在學校之間的變異量。

Level 1:
Y = β 0 + β 1*X1 + e
Level 2:
β 0 = β 0 0+e0
β 1 = β 01

方程式整理後,記住這個方程式,等等spss會輸出這些數值

Y = β 0 0 + β 1*X1 + e+e0

圖示化如下,左邊是允許截距變化(β 0 0+e0),但固定斜率(β 01);右邊是傳統的迴歸方程式。傳統的迴歸方程式把斜率和截距都固定。這張圖也就很好呈現何謂固定和隨機效果。在本範例中,固定效果就是認為係數並不會因為學校不同而變化,因為我們認定所收集的學校數量=感興趣母體的所有學校數量,不需要推論,所以不含誤差。隨機效果就是認為係數會因為學校不同而有變化,其認定為我們收集的學校數量不等於我們感興趣母體的所有學校數量,這時要推論到母群體需要包含誤差(變異量)。

固定和隨機效果延伸閱讀請點我

raw-image



以行動支持創作者!付費即可解鎖
本篇內容共 3367 字、0 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
教育心理博士的筆記本
263會員
139內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕在Extension 2中,可以使用的分類變量進行Multiple group分析。接下來,擴展 RI-CLPM 的另一種方法是為每個使用多個指標測量,本文將簡介兩種Multiple indicators模型。
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕在Extension 2中,可以使用的分類變量進行Multiple group分析。接下來,擴展 RI-CLPM 的另一種方法是為每個使用多個指標測量,本文將簡介兩種Multiple indicators模型。
Thumbnail
接續第三章內容,有時候多層次資料不只一個層次,可能具有多種層次,例如:學生屬於某個學校,而學校又屬於某個縣市。本章主要說明三層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解三層次之隨機截距斜率模型概念和操作。
Thumbnail
接續第三章內容,有時候多層次資料不只一個層次,可能具有多種層次,例如:學生屬於某個學校,而學校又屬於某個縣市。本章主要說明三層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解三層次之隨機截距斜率模型概念和操作。
Thumbnail
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
Thumbnail
接續第二章內容,本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從公式開始,然後在教學SPSS視窗和語法操作,相信看完後,讀者就會了解雙層次之隨機截距斜率模型概念和操作。
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式學會調節中介模式。本文將介紹四種類型的變項,並解釋調節式中介的公式,還有如何操作最4.0版本的PROCESS macro for SPSS。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
PROCESS macro for SPSS 可以用非常簡單方式使用調節分析。本文將介紹三種類型的變項,還有如何操作最4.2版本的PROCESS macro for SPSS進行調節模式。文末也會附上所有所有Process模型圖例,提供給讀者方便分析~
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News