DP動態規劃 深入淺出 以Coin change II 找零方法數 為例

小松鼠-avatar-img
發佈於演算法題目解析 個房間
更新於 發佈於 閱讀時間約 10 分鐘


raw-image

如同這個Dynamic programming 深入淺出系列的開始,在經過比較簡單的入門題(Coin Change)之後,來看進階一點的DP題目Coin Change II


不免俗,再次強調DP的解題框架,鞏固知識點。

Dynamic programming本質是透過遞迴關係式,去解決一個大規模的問題,而這個大規模的問題又可以被分解為較小規模的子問題,而且子問題往往彼此重複


Dynamic programming的解題框架可分為三大步驟
1. 定義狀態 [我在哪裡]
2. 定義狀態轉移關係式(通則) [我從哪裡來] => [答案從哪裡推導而來]
3. 釐清初始狀態(也可以說是遞迴的終止條件) [第一步怎麼走,怎麼出發的]

題目敘述  Coin Change II

給定銅板陣列coins,和目標金額amount。
要求我們計算找零組合方法總數


測試範例

Example 1:

5 元總共有4種找零方法,分別是

5元銅板一枚

2元銅板兩枚+1元銅板一枚

2元銅板兩枚+1元銅板三枚

1元銅板五枚

Input: amount = 5, coins = [1,2,5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

Example 2:

Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.

Example 3:

Input: amount = 10, coins = [10]
Output: 1

我們還是先走過一遍解題框架可分為三大步驟,藉此鞏固解題基礎。

1. 定義狀態 [我在哪裡]

這題如果寫過Coin change的人,可能會有一個直接的想法:

Easy, 這題就是前一提的變形,用類似的定義,改成相加就好。

乍看沒問題,但是我們是著走過一個小例子,看看會遇到什麼情況

定義DP[n] = n元零錢找零組合數目。

假設只有兩種銅板$1和$2,問: 找開3元有幾種組合數

DP[0] = 1 顯然0元只有一種找零組合數: 所有銅板都不拿

DP[1] = 1 顯然1元只有一種找零組合數: $1銅板一枚

DP[2] = DP[2-1] + DP[2–2] = DP[1] + DP[0] = 1 + 1 = 2

2元有兩種找零組合數: $1銅板兩枚 或 $2銅板一枚

恩…so far so good 看起來沒問題,但真的是如此嗎?


繼續看下去,看n=3的時候會發生什麼事

DP[3] = DP[3–1] + DP[3–2] = DP[2] + DP[1] = 2 + 1 = 3

這個錯的DP演算法告訴我們有3元有三種找零組合數

但是,其實3元只有兩種找零組合數:


第一種方法 $1銅板3枚 或
第二種方法 $1銅板1枚和 $2銅板1枚


那為什麼上面的DP算法會出現三種呢?

因為上面那種定義無形中已經考慮排列,

但是題目只要求組合數目,所以出現了重複計算的情狀。


DP[3]

= DP[3 - 1] (註: 這個-1代表用$1銅板一枚來湊最後一步) +

DP[3 - 2] (註:這個-2代表用$2銅板一枚來湊最後一步)

= DP[2]+ DP[1]

打開來看,看裡面發生了什麼事

DP[2] = $1銅板兩枚 或 $2銅板一枚 (+ $1銅板一枚來湊最後一步)

=> “$1銅板三枚” 或 “$2銅板一枚 + $1銅板1枚

DP[1] = $1銅板一枚 (+用$2銅板一枚來湊最後一步)

=> “$1銅板一枚 + $2銅板一枚


仔細看標粗體的地方,“$2銅板一枚 + $1銅板1枚” 和 “$1銅板一枚 + $2銅板一枚”其實是同一種組合,在DP[2]這條路徑被計入一次,在DP[1]這條路徑又被記入一次,重複了!

所以原本這個定義是錯的,不能使用


那該怎麼辦呢?


其實,DP也不限定只能一維,我們可以引入一個新的維度,代表銅板的index,一但考慮過,就前往下一個銅板的index,避免重複計算

DP[ coinIdx, n]: 代表考慮當下這個銅板coins[coinIdx],湊出n元的組合數


2. 定義狀態轉移關係式(通則)
[我從哪裡來] => [答案從哪裡推導而來]

這裡題目也沒給,不過沒關係,我們可以試者推倒看看。

用剛剛的小範例幫助我們思考

Input: amount = 3 coins =[1,2]
Output: 2

3元的找零組合數

使用兩元銅板的3元的找零組合數 + 不使用兩元銅板的3元的找零組合數

再往下展開

使用兩元銅板使用一元銅板的3元的找零組合數 +

使用兩元銅板不使用一元銅板的3元的找零組合數 +

不使用兩元銅板使用一元銅板的3元的找零組合數 +

不使用兩元銅板不使用一元銅板的3元的找零組合數

$2銅板一枚 $1銅板1枚 +

無法找開 +

$1銅板3枚 +

無法找開


所以,總共就是兩種:

$2銅板一枚 $1銅板1枚, 或 $1銅板3枚 去找開3塊錢

輸出為2

推廣到通則就是

DP(coinIdx, n )

= DP( coinIdx-1, n ) + DP( coinIdx, n — coins[coinIdx] )

不使用coins[coinIdx]元銅板的n元的找零組合數 + 使用coins[coinIdx]元銅板的n元的找零組合數


3. 釐清初始狀態(終止條件)
[第一步怎麼走,怎麼出發的]

終止條件滿明顯的,

就是n=0 (0塊錢),和n<0負數(因為負的幣值無法找零)的狀態。

0塊錢找零只有一種方法,就是不拿任何一枚銅板,return 1。


負的幣值無法找零,找零組合數為0,return 0


另外,負的coinIdx,代表沒有提供零錢去找零,

很顯然,沒有提供零錢也無法找零,找零組合數也為0,return 0


到這裡,已經填滿解題框架的所有內容,接著我們把它轉成程式碼,

這裡以Python作為示範


程式碼 DP動態規劃

class Solution:
 def change(self, amount: int, coins: List[int]) -> int:

  table = {}

  def dp( coinIdx, n ):

   if n == 0:
    # base case
    # Change for $0, only one way to do so by taking nothing
    return 1

   if (coinIdx < 0) or (n < 0):
    # base cases
    # Cannot make change without valid coins
    # Cannot make change to negative values
    return 0

   if (coinIdx, n) in table:
    # look-up table
    return table[ (coinIdx, n) ]

   # general cases
   table[ (coinIdx, n) ] = dp( coinIdx-1, n ) + dp( coinIdx, n - coins[coinIdx] )
   return table[ (coinIdx, n) ]

  # ---------------------------------

  return dp( len(coins)-1, amount)

複雜度分析

時間複雜度:O( c * n )

零錢本身一個維度,amount被找開的金額本身又是另一個維度。


空間複雜度:O( c * n )

零錢本身一個維度,amount被找開的金額本身又是另一個維度。

DP table 所耗費空間剛好就是一張二維的表格,O( c * n )


等價的迭代寫法(Iterative implementation)

輔助思考的圖解範例

raw-image
class Solution:
 def change(self, amount: int, coins: List[int]) -> int:

  # base case:
  # amount 0's method count = 1 (by taking no coins)
  change_method_count = [1] + [ 0 for _ in range(amount)]
  
  # make change with current coin, from small coin to large coin
  for cur_coin in coins:
   
   # update change method count from small amount to large amount
   for small_amount in range(cur_coin, amount+1):
    
    # current small amount can make changed with current coin
    change_method_count[small_amount] += change_method_count[small_amount - cur_coin]
    
  return change_method_count[amount]

複雜度分析

時間複雜度:O( c * n )

零錢本身一個維度,amount被找開的金額本身又是另一個維度。


空間複雜度:O( n )

amount被找開的金額本身是一個維度。

change_method_count 所耗費空間剛好就是一張一維的表格,O( n )


關鍵知識點 找零錢DP框架

強烈建議跟著複習相關的Coin Change I演算法框架統整:

合縱連橫: 找零錢的DP框架_理解背後的本質

觸類旁通: 用 DFS回溯法框架 解 組合數之和 Combination sum 全系列題。

去鞏固知識點,強化理解與認識、加深印象。


Reference

[1] Python/JS/Go/C++ O(cn) DP // Unbounded Knapsack [w/ Visualization]


回到DP特訓班目錄 和 學習路徑

avatar-img
90會員
425內容數
由有業界實戰經驗的演算法工程師, 手把手教你建立解題的框架, 一步步寫出高效、清晰易懂的解題答案。 著重在讓讀者啟發思考、理解演算法,熟悉常見的演算法模板。 深入淺出地介紹題目背後所使用的演算法意義,融會貫通演算法與資料結構的應用。 在幾個經典的題目融入一道題目的多種解法,或者同一招解不同的題目,擴展廣度,並加深印象。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
深入淺出,從最基本的 費式數列, 一探動態規劃的奧秘與精隨。
Coin Change + DP 策略_Leetcode 面試題 上機考 題目 詳細解說
深入淺出,從最基本的 費式數列, 一探動態規劃的奧秘與精隨。
Coin Change + DP 策略_Leetcode 面試題 上機考 題目 詳細解說
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
開立專欄至今也快滿兩年了,先感謝各位的支持與指教,成立專欄的初衷是希望找到志同道合的夥伴,一起挑戰外匯市場,畢竟一個人也許走得快,但是一群人才能走得久。 交易的世界是孤獨的,每一個決定,不管是賺錢、賠錢都得自己面對,當然有潮起也會有潮落,不太可能有人永遠順風,不過至少在逆風的時候,身邊有一群志同道
Thumbnail
眾所周知,幣安的活動數量跟種類相當多,除了交易賽之外,還有一些很簡單的抽獎活動可以參加,像是「一美元遊戲」就是其中之一,它的參與步驟超簡單,只需要我們投入 1 USDT,就有機會將 1 USDT 換成價值 500 美元的加密貨幣!
隨機漫步看似簡單,但卻是模擬許多自然界現象的基礎,相關的觀念及程式實作方式,對於瞭解亂數、機率、Perlin noise等工具,會有相當大的幫助。
Thumbnail
本文章介紹如何利用PD Arrays和ICT 2022 Model在虛擬貨幣市場找到交易機會。透過定義日線起點、畫出日內折溢價區和尋找潛在PD Arrays,建立起完整的交易系統。文章內容包含具體的交易策略和步驟及實例說明和分析。血哥分享自己的交易經驗,並提供交易員培訓計劃,邀請讀者一起加入學習。
※ JavaScript的五種運算子: 我們希望操控這些值,來達成我們想要的結果。 運算式由運算元和運算子組成。運算元是指我們要拿去做運算的東西是什麼?例如:5和4。運算子是他要做什麼樣子的運算?例如:"+"。 算術運算子:"+加"、"-減"、"*乘"、"/除"、"%(mod餘數概念)"。
在求學階段,你已經對代數的計算熟到不能再熟,所以變數(variable)對你來說應該不至於太陌生,先來看看以下這個例子:   
描述了學習數學加法的過程與交易觀念的類比。一開始學習時可能會犯錯,需要不斷練習和檢討才能提高正確率,最終達到完美的正確率。同樣地,在交易中,重現獲利的關鍵在於重複和一致性,需要紀錄並觀察自己的交易模型,以找出不一致的地方,進而達到一致性。
Thumbnail
在Python中,數值運算非常直觀,你可以使用標準的數學運算符號進行基本的數值運算。以下是一些基本的數值運算: 進行計算時,按照「先乘除後加減」的規則,並優先計算小括號刮起來的運算式。 print('答案:' ,(1+1)*2) #​答案: 4 復合型態的運算子 指定運算子 = 若是結合算術
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
開立專欄至今也快滿兩年了,先感謝各位的支持與指教,成立專欄的初衷是希望找到志同道合的夥伴,一起挑戰外匯市場,畢竟一個人也許走得快,但是一群人才能走得久。 交易的世界是孤獨的,每一個決定,不管是賺錢、賠錢都得自己面對,當然有潮起也會有潮落,不太可能有人永遠順風,不過至少在逆風的時候,身邊有一群志同道
Thumbnail
眾所周知,幣安的活動數量跟種類相當多,除了交易賽之外,還有一些很簡單的抽獎活動可以參加,像是「一美元遊戲」就是其中之一,它的參與步驟超簡單,只需要我們投入 1 USDT,就有機會將 1 USDT 換成價值 500 美元的加密貨幣!
隨機漫步看似簡單,但卻是模擬許多自然界現象的基礎,相關的觀念及程式實作方式,對於瞭解亂數、機率、Perlin noise等工具,會有相當大的幫助。
Thumbnail
本文章介紹如何利用PD Arrays和ICT 2022 Model在虛擬貨幣市場找到交易機會。透過定義日線起點、畫出日內折溢價區和尋找潛在PD Arrays,建立起完整的交易系統。文章內容包含具體的交易策略和步驟及實例說明和分析。血哥分享自己的交易經驗,並提供交易員培訓計劃,邀請讀者一起加入學習。
※ JavaScript的五種運算子: 我們希望操控這些值,來達成我們想要的結果。 運算式由運算元和運算子組成。運算元是指我們要拿去做運算的東西是什麼?例如:5和4。運算子是他要做什麼樣子的運算?例如:"+"。 算術運算子:"+加"、"-減"、"*乘"、"/除"、"%(mod餘數概念)"。
在求學階段,你已經對代數的計算熟到不能再熟,所以變數(variable)對你來說應該不至於太陌生,先來看看以下這個例子:   
描述了學習數學加法的過程與交易觀念的類比。一開始學習時可能會犯錯,需要不斷練習和檢討才能提高正確率,最終達到完美的正確率。同樣地,在交易中,重現獲利的關鍵在於重複和一致性,需要紀錄並觀察自己的交易模型,以找出不一致的地方,進而達到一致性。
Thumbnail
在Python中,數值運算非常直觀,你可以使用標準的數學運算符號進行基本的數值運算。以下是一些基本的數值運算: 進行計算時,按照「先乘除後加減」的規則,並優先計算小括號刮起來的運算式。 print('答案:' ,(1+1)*2) #​答案: 4 復合型態的運算子 指定運算子 = 若是結合算術