C015|編碼器-解碼器循環神經網路如何影響注意力機制的設計?

更新於 發佈於 閱讀時間約 3 分鐘

「注意力機制 Attention Mechanisms」,


是學習「自然語言處理 Natural Language Processing NLP」以及


「大語言模型 Large Language Model LLM」技術細節必備的概念。


而根據Sebastian Raschka [1] 的著書"Build a Large Language Model (From Scratch)"[2],


常見的注意力機制有四種:


01 簡化自注意力 Simplified Self-Attention


02 自注意力 Self-Attention


03 因果注意力 Causal Attention


04 多頭注意力 Multi-Head Attention


這樣一想,或許訓練特定領域的語言模型,


可以直接用具體表格重新預訓練,然後再看作任務的效果如何。


如果可以補缺失值補得很好,那一切其實都很好。


那麼,當我們在對「長序列 Long Sequences」建模時,


如果不使用自注意力機制,會發生什麼問題呢? [3]


注意力機制的設計,


其實起源於「編碼器-解碼器循環神經網路 Encoder-Decoder Recurrent Neural Networks」[4]。


而編碼器-解碼器循環神經網路起源於「機器翻譯 Machine Translation」[5]。


你有想過機器是怎麼做翻譯的嗎?


機器其實不是像人類這樣一的單字對應一個單字去翻譯,


而是使用「編碼器 Encoder」與「解碼器 Decoder」來做語言之間的翻譯。


其中編碼器的任務,是「閱讀 Read」與「處理 Process」完整的文本,


而解碼器的任務,則是「產生 Produced」翻譯過後的文本。


而做機器翻譯最受歡迎的框架,就是「循環神經網路 Recurrent Neural Networks」[6]。


而編碼器-解碼器循環神經網路具體的工作方式,


首先編碼器會把輸入的文本,照「順序」去處理,接著更新其自身的「隱層狀態 Hidden State」。


「隱層狀態 Hidden State」就是「隱層 Hidden Layer」的「內部值 Internal Value」,


你也可以將「隱層狀態 Hidden State」理解成神經網路的「記憶細胞 Memory Cell」。


而解碼器,則是要將「最終隱層狀態 Final Hidden State」轉換為翻譯後的句子。


然而,循環神經網路最大的問題,就是「想不起來早期的記憶細胞」,


而更傾向於從「近期的記憶細胞」來翻譯句子。


這樣造成的主要問題是「脈絡遺失 Loss of Context」,


對於那種複雜句子就沒輒了。


而循環神經網路的這個弱點,也推動了注意力機制的設計。


Reference

[1] https://sebastianraschka.com/

[2] Figure 3.2, https://www.manning.com/books/build-a-large-language-model-from-scratch

[3] Section 3.1, https://www.manning.com/books/build-a-large-language-model-from-scratch

[4] https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html

[5] https://d2l.ai/chapter_recurrent-modern/machine-translation-and-dataset.html

[6] https://en.wikipedia.org/wiki/Recurrent_neural_network

留言
avatar-img
留言分享你的想法!
avatar-img
王啟樺的沙龍
559會員
1.8K內容數
Outline as Content
王啟樺的沙龍的其他內容
2025/03/29
Passive Consumption(被動接收) vs. Active Reading(主動閱讀)|真正讓你進化的閱讀差在這裡 碩博士生每天都在讀論文、讀報告、讀教材, 但大多數人其實只是「看過了」,不是「讀進去了」。 讀很多卻吸收很少,記不起重點、寫不出心得, 不是你不夠努力,而是你還停
2025/03/29
Passive Consumption(被動接收) vs. Active Reading(主動閱讀)|真正讓你進化的閱讀差在這裡 碩博士生每天都在讀論文、讀報告、讀教材, 但大多數人其實只是「看過了」,不是「讀進去了」。 讀很多卻吸收很少,記不起重點、寫不出心得, 不是你不夠努力,而是你還停
2025/01/29
4 個關鍵洞見 + 讓你看懂中美 AI 競爭 + 若不讀,你就可能錯失整個時代的最大機遇 AI 的發展速度,真的快到讓人心驚。 我們常常以為美國在 AI 領域穩居頂尖,可現在中國的 AI 創新力好像開始迎頭趕上,這背後的原因是什麼? 若我們沒有跟上這波 AI 變革,就可能被遠遠拋在後面,錯失技
Thumbnail
2025/01/29
4 個關鍵洞見 + 讓你看懂中美 AI 競爭 + 若不讀,你就可能錯失整個時代的最大機遇 AI 的發展速度,真的快到讓人心驚。 我們常常以為美國在 AI 領域穩居頂尖,可現在中國的 AI 創新力好像開始迎頭趕上,這背後的原因是什麼? 若我們沒有跟上這波 AI 變革,就可能被遠遠拋在後面,錯失技
Thumbnail
看更多
你可能也想看
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Vaswani 等人 2017 年解決了設計 Transformer 時最困難的 NLP 問題之一,對於我們人機智慧設計師來說,機器翻譯的人類基準似乎遙不可及,然而,這
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Vaswani 等人 2017 年解決了設計 Transformer 時最困難的 NLP 問題之一,對於我們人機智慧設計師來說,機器翻譯的人類基準似乎遙不可及,然而,這
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 仔細看 AI說書 - 從0開始 - 66 中,Decoder 的 Multi-Head Attention 框框,會發現有一條線空接,其實它是有意義的,之所以空接,是因
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 仔細看 AI說書 - 從0開始 - 66 中,Decoder 的 Multi-Head Attention 框框,會發現有一條線空接,其實它是有意義的,之所以空接,是因
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Decoder
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Decoder
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Attenti
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Attenti
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 講完 Transformer 之 Encoder 架構中的 Embedding 與 Positional Encoding 部分,現在進入 Multi-Head Att
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 41中,提及 Transformer 的 Encoder 架構如下圖所示: 此外我已經在AI說書 - 從0開始 - 42中,
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 41中,提及 Transformer 的 Encoder 架構如下圖所示: 此外我已經在AI說書 - 從0開始 - 42中,
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在AI說書 - 從0開始 - 41中,我們提及 Transformer 的 Encoder 架構如下圖所示,同時我們羅列幾個要點於圖示右邊: 原始 Transform
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News