【深智書摘】圖神經網路 (GNN) 簡介

更新於 發佈於 閱讀時間約 2 分鐘
大部分處理影像的神經網路,例如簡單的神經網路、CNN、物件偵測、語義分割、臉部辨識等,都是以像素為輸入特徵,圖神經網路 (GNN) 則是以圖形理論 (Graph Theory) 為基礎,以向量作為輸入,內含節點 (Node) 及邊 (Edge),如下圖,以圖形表達集團交叉持股的關係及持股比例。
圖1. 和信集團交叉持股
圖神經網路 (Graph Neural Network, GNN),可以應用到許多方面:
●物理 (Physical System),例如3D物件 (Particles) 的座標與關聯。
●化學 (Chemistry):例如分子結構 (Molecules)。
●地理 (Geography):地圖、交通、道路等,可表達A點到B點的距離、時間、方向等。
●醫學:藥物間的交互作用 (Drug-drug interaction)。
●影像:向量圖、影像分類…等。
●文字:文章引用、語意分析、知識圖譜 (Knowledge Graph),例如各種機率分配的關聯…等。
●商品推薦:相似或互補商品的關聯、組合包 (Sales kits) …等。
●商業應用:產品製造清單 (BOM)、集團交叉持股…等。
●社群軟體:社交圈 (Social Circle) 偵測、追蹤 (Follow) / 被追蹤關係、假新聞的辨識與追蹤。
圖形理論應用的層面非常廣泛,因此,近幾年學者也試圖結合神經網路,進行各種更進階、複雜的任務。
目前支援圖神經網路的套件至少有三個:
1. PyTorch Geometric (PyG):建置在PyTorch之上。
2. Deep Graph Library (DGL):建置在PyTorch、TensorFlow及MXNet之上。
3. Spektral:建置在TensorFlow 2/Keras之上。
開發者傳授 PyTorch 秘笈』一書有詳盡的介紹,包括:
★圖形理論概論。
★NetworkX套件的使用。
★圖形理論應用。
★GNN主要的神經層:『圖卷積神經網路』 (Graph Convolutional Network, GCN),與PyTorch整合。
★GNN範例實作。
《開發者傳授 PyTorch 秘笈》/ 陳昭明 著
本文節錄自深智數位出版之《開發者傳授 PyTorch 秘笈》。
為什麼會看到廣告
avatar-img
9會員
25內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
深智數位的沙龍 的其他內容
要徹底了解深度學習,必須從數學/統計奠定基礎,從張量運算、偏微分、梯度下降優化求解,最後依據機率統計衡量模的效能指標,包括準確率 (Accuracy)、精確率 (Precision)、召回率 (Recall),乃至於混淆矩陣 (Confusion Matrix)。
TensorFlow、PyTorch 是目前佔有率最高的深度學習框架,初學者常會問『應該選擇PyTorch或 TensorFlow套件』,依個人看法,PyTorch、TensorFlow好比倚天劍與屠龍刀,各有擅場,兩個套件的發展重點有所不同,例如在偵錯方面,PyTorch比較容易,但Tensor
2020年VMware發布VMware vSphere 7.0,透過整合資料中心伺服器、靈活設定資源等方式降低了營運成本,同時還可在不增加成本的情況下提供給使用者高可用、災難恢復等進階特性。
行動通訊系統十年一代,從 1G 到 4G,歷經了「模擬、數位、資料、寬頻」四次技術變革,為全世界的億萬使用者帶來了「前所未有」的嶄新感受。尤其是 4G 技術開啟了行動網際網路時代,深刻改變了人們的生活方式。
隨著軟體規模、性能要求的不斷提升,分散式系統得到快速發展。分散式系統透過許多低成本節點的協作來完成原本需要龐大單體應用才能實現的功能,在降低硬體成本的基礎上,提升了軟體的可靠性、擴充性、靈活性。
一個互動列應用就像一塊積木,可以方便地與其他互動列應用組合在一起,進而完成高度複雜的工作。這就像只要掌握26個字母,就可以組合出近乎無限的單字。
要徹底了解深度學習,必須從數學/統計奠定基礎,從張量運算、偏微分、梯度下降優化求解,最後依據機率統計衡量模的效能指標,包括準確率 (Accuracy)、精確率 (Precision)、召回率 (Recall),乃至於混淆矩陣 (Confusion Matrix)。
TensorFlow、PyTorch 是目前佔有率最高的深度學習框架,初學者常會問『應該選擇PyTorch或 TensorFlow套件』,依個人看法,PyTorch、TensorFlow好比倚天劍與屠龍刀,各有擅場,兩個套件的發展重點有所不同,例如在偵錯方面,PyTorch比較容易,但Tensor
2020年VMware發布VMware vSphere 7.0,透過整合資料中心伺服器、靈活設定資源等方式降低了營運成本,同時還可在不增加成本的情況下提供給使用者高可用、災難恢復等進階特性。
行動通訊系統十年一代,從 1G 到 4G,歷經了「模擬、數位、資料、寬頻」四次技術變革,為全世界的億萬使用者帶來了「前所未有」的嶄新感受。尤其是 4G 技術開啟了行動網際網路時代,深刻改變了人們的生活方式。
隨著軟體規模、性能要求的不斷提升,分散式系統得到快速發展。分散式系統透過許多低成本節點的協作來完成原本需要龐大單體應用才能實現的功能,在降低硬體成本的基礎上,提升了軟體的可靠性、擴充性、靈活性。
一個互動列應用就像一塊積木,可以方便地與其他互動列應用組合在一起,進而完成高度複雜的工作。這就像只要掌握26個字母,就可以組合出近乎無限的單字。
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文介紹使用 PyTorch 及類神經網路進行圖形資料集的分類。Fashion-MNIST 提供了機器學習研究上的著名範例;服飾的灰階圖像的分類。本文指導讀者從安裝 torchvision 到建立類神經網路,進行圖形分類的完整過程。也詳述了資料處理及訓練過程,幫助理解類神經網路在圖形分類上的應用。
Thumbnail
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
本篇文章專注於消息傳遞(message passing)在圖神經網絡(GNN)中的應用,並以簡單的例子解釋了消息傳遞的過程和機制。
Thumbnail
本文主要筆記使用pytorch建立graph的幾個概念與實作。在傳統的神經網路模型中,數據點之間往往是互相連接和影響的,使用GNN,我們不僅處理單獨的數據點或Xb,而是處理一個包含多個數據點和它們之間連結的特徵。GNN的優勢在於其能夠將這些連結關係納入模型中,將關係本身作為特徵進行學習。
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
本文主要介紹神經網路訓練辨識的過程,利用fashion_mnist及簡單的神經網路來進行分類。 使用只有兩層的神經網路來訓練辨識fashion_mnist資料。
Thumbnail
感知器是一種基本的神經網路模型,用於二分類問題。它模擬了人腦神經元的工作原理,通過調整權重和偏差值來達到預測和分類的目的。 感知器流程 輸入 資料的輸入: 輸入層接受資料的輸入,每個輸入對應一個特徵,還有一個固定的偏差神經元。 資料經過每個神經元時,會乘上相應的
Thumbnail
卷積神經網路(CNN)是一種專門用於影像相關應用的神經網路。本文介紹了CNN在影像辨識中的應用,包括圖片的組成、Receptive Field、Parameter Sharing、以及Pooling等技術。通過本文,讀者將瞭解CNN在影像辨識領域的優勢和運作原理。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
本文介紹使用 PyTorch 及類神經網路進行圖形資料集的分類。Fashion-MNIST 提供了機器學習研究上的著名範例;服飾的灰階圖像的分類。本文指導讀者從安裝 torchvision 到建立類神經網路,進行圖形分類的完整過程。也詳述了資料處理及訓練過程,幫助理解類神經網路在圖形分類上的應用。
Thumbnail
本篇文章介紹如何使用PyTorch構建和訓練圖神經網絡(GNN),並使用Cora資料集進行節點分類任務。通過模型架構的逐步優化,包括引入批量標準化和獨立的消息傳遞層,調整Dropout和聚合函數,顯著提高了模型的分類準確率。實驗結果表明,經過優化的GNN模型在處理圖結構數據具有強大的性能和應用潛力。
Thumbnail
透過這篇文章,我們將瞭解如何使用PyTorch實作圖神經網絡中的訊息傳遞機制,從定義消息傳遞的類別到實作消息傳遞過程。我們也探討了各種不同的消息傳遞機制,並通過對單次和多次傳遞過程的結果,可以看到節點特徵如何逐步傳遞與更新。
Thumbnail
本篇文章專注於消息傳遞(message passing)在圖神經網絡(GNN)中的應用,並以簡單的例子解釋了消息傳遞的過程和機制。
Thumbnail
本文主要筆記使用pytorch建立graph的幾個概念與實作。在傳統的神經網路模型中,數據點之間往往是互相連接和影響的,使用GNN,我們不僅處理單獨的數據點或Xb,而是處理一個包含多個數據點和它們之間連結的特徵。GNN的優勢在於其能夠將這些連結關係納入模型中,將關係本身作為特徵進行學習。
Thumbnail
GNN發展背景 傳統的深度學習模型如在計算機視覺(CV)和自然語言處理(NLP)領域中極為成功,主要是處理結構化數據如影像和文本。這些數據類型通常具有固定且規律的結構,例如影像是由有序的像素點組成。然而,在真實世界中,許多數據是非結構化的,如化合物結構(原子和分子)。這些數據雖然具有一定的規則性,
Thumbnail
本文主要介紹神經網路訓練辨識的過程,利用fashion_mnist及簡單的神經網路來進行分類。 使用只有兩層的神經網路來訓練辨識fashion_mnist資料。
Thumbnail
感知器是一種基本的神經網路模型,用於二分類問題。它模擬了人腦神經元的工作原理,通過調整權重和偏差值來達到預測和分類的目的。 感知器流程 輸入 資料的輸入: 輸入層接受資料的輸入,每個輸入對應一個特徵,還有一個固定的偏差神經元。 資料經過每個神經元時,會乘上相應的
Thumbnail
卷積神經網路(CNN)是一種專門用於影像相關應用的神經網路。本文介紹了CNN在影像辨識中的應用,包括圖片的組成、Receptive Field、Parameter Sharing、以及Pooling等技術。通過本文,讀者將瞭解CNN在影像辨識領域的優勢和運作原理。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。