PCB和Via有關的熱效應

更新於 發佈於 閱讀時間約 3 分鐘
在PCB 當中,和Via有關熱效應可以分作幾個方面:
1. 電流不經過Via, 但因為打了Via,而造成通道銅箔變窄
2. 因為Via的排列方式,導致每一顆Via經過的電流並不平均
模型以常見的Via32做測試,以截面積寬為361mil加載25A作為分析對象。觀察打了一組4x4的矩陣之後會有什麼狀況。
疊構的話採用表層銅箔厚1.8mil,內層銅箔厚2.6mil,上下介電層使用FR4,分別取68.11mil與51.57mil的非對稱結構。 (因為只是模擬,就沒有特別去畫成對稱了。)
其中,通道銅箔的測試,電流僅在內層流動,而Via排列的測試則是由TOP走到BOT。

通道銅箔變窄

針對Via間隙的測試
透過改變via間隙,來觀察在不影響通道寬的狀況下,最高溫情況是否有所改變。結果看起來改變via間距並沒有太大差別。
針對排列方式的測試
再來觀察如果保持一樣的via數量,但是改變排列方式,使通道截面積變寬,最高溫是否有因此改變。結果表示,通道銅箔的發熱程度,基本上只和通道寬度相關,沿電流方向排列可以減少裁切面積,效果較好。

Via placement

由於方陣排列容易造成Via current不平均,內圈效果遠不如外圈好,因此針對不同的排列方式進行嘗試,並和原始方陣排列比較效果。
(*圖中Color map為current density而非指溫度)
原始方陣排列 -134.22C
越紅代表電流集中的地方,而電流由左從TOP經由via銅壁走到BOT層。可以看到首先大部分電流由第一排下去,外圍與第二排差不多,到內層第三排以後其實使用的效果就差很多。
垂直於電流方向 -129.61C
概念是縮減至無內圈Via,雖然提高了有效運用的第一排via數目,但是卻讓第二排的整體使用率不如預期,整體算是略有幫助。
沿電流方向 -118.79C
在無內圈基礎下,充分使用到每一顆Via,同時減緩了兩端電流梯度,是各方案中效果最好的,已經接近5×5 via方陣的結果了 (16顆抵25顆)。
Grouped Via -121.38C
考量到施工空間可能沒辦法做成一條龍式,因此考慮增加中間通道,效果略差但也還不錯
值得注意的是,通道並不是越寬越好,遠到一個程度後方Via會被忽略,如下圖
右側的8顆因為距離太遠而基本上發揮不了功能,而左側的8顆實際上只有最靠近中間的兩顆有功能,所以也不是多打就有用,不夠近就沒有意義。

延伸閱讀-與IPC 2221x的比較

業界對於Via current 的設計準則一般都是參考IPC 2221x的文獻,然而這份文獻的研究對象是單顆Via, 而實際上設計大概很少只打單顆,所以透過模擬來看看打多顆會怎樣。
疊構很簡單的採兩面銅各1.7mil,介電層厚60mil,中間打一顆Via 18鍍層1mil。從1A開始加載到5A。單顆壓降的結果基本上和文獻接近,沒什麼大問題。
然後我們就很常聽到Layout在算1顆可以走幾A,然後說你這個走200A要幾顆。但是,這個關係真的是線性的嗎? 下面是我們線性擴展成16顆via的測試,也就是說,如果1顆可以走1A,那16顆應該要可以走16A,如果1顆可以走5A,那16顆應該要可以走80A。
結果慘不忍睹,相對於單顆幾乎沒有溫升的狀況,多顆惡化的情形超乎預期。
多顆Via的狀況下,每一顆的負載並不均勻,外圍重內部輕,內外壓降相差可以到接近3倍 (0.0004V~0.0011V)
其二是,即使我們假設發熱量是線性的,多顆Via的累積熱還是遠比單顆高,但是散熱面積卻沒有相應增加,如果考量被挖掉的部分甚至是更少,因此以為1顆可以走2A所以=25顆可以走50A的想法基本上是不成立的。
avatar-img
45會員
43內容數
和工作相關的筆記整理地
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
熱流資訊站的沙龍 的其他內容
有這麼一個江湖流傳已久的手法 "把solder mask開窗,露銅上錫可以幫助銅箔散熱" 說實在是,我本人很是懷疑,於是有了這次的模擬 結論是,還真有幫助,但是並不是幫助散熱,而是增加局部銅厚,幫忙減輕銅箔電流密度負擔。
在這兩篇曾經提過PCB Layout對於晶片溫度有著不小的影響: IC的熱相關參數: 熱傳遞路線與THERMAL METRIC IC的熱相關參數: 熱阻與熱特性參數 這篇透過3種狀況來比較其表現,分別是: 載入真實線路,等效熱傳導係數,以及一整塊FR-4,分別對應Rjb從大到小,讓大家用模擬感受一下
有這麼一個江湖流傳已久的手法 "把solder mask開窗,露銅上錫可以幫助銅箔散熱" 說實在是,我本人很是懷疑,於是有了這次的模擬 結論是,還真有幫助,但是並不是幫助散熱,而是增加局部銅厚,幫忙減輕銅箔電流密度負擔。
在這兩篇曾經提過PCB Layout對於晶片溫度有著不小的影響: IC的熱相關參數: 熱傳遞路線與THERMAL METRIC IC的熱相關參數: 熱阻與熱特性參數 這篇透過3種狀況來比較其表現,分別是: 載入真實線路,等效熱傳導係數,以及一整塊FR-4,分別對應Rjb從大到小,讓大家用模擬感受一下
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
每當有人詢問筆者,馬達線材可承受的最大電流是多少? 腦中的第一個想法是要優先確認目標線材,馬達當中會有兩種線材需要確認電流狀況,分別為出口線及漆包線。若是詢問出口線的部分,那十分簡單,查閱電工法規就會告知多少電流需要使用多粗的線徑,甚至連絕緣皮膜的種類耐溫規範都直接規定,只需要照表操課就可以,如下圖
Thumbnail
無論是何種線圈加工,後續仍有組裝及接線的工作得處理,然電子線相比於空心線圈會多了一個絕緣塑膠架部分,反而增加了些許不確定要素,因此特別提出討論說明。 由下圖所示,可知單一的電子線圈製作完成後,還須放置於對應的機構尺寸當中,經過多次組工序後才是完成品;倘若個別塑膠有產生了尺寸的變化,就有可能導致電子
Thumbnail
對筆者而言,電子線圈與空心線圈的差異,僅在是否連同絕緣塑膠架一併繞線,除此之外的繞線工藝皆如出一轍。但也因為絕緣塑膠架的加入,其實對量產而言,多了一個不穩定因素;過往經驗曾遇過塑膠架太薄,繞完後的漆包線圈過於緊迫,竟然造成塑膠架變形的詭異情況;亦有製造穩定性不足,塑膠架尺寸差異過大,進而影響到電子線
Thumbnail
多邊形空心線圈十分類似方形線圈,同樣會有個線圈外膨的現象,使得完成線型可能不如預期。在方形空心線圈的討論文章中,著重討論的是兩彎角之間的距離及漆包線徑的剛性強度影響,這些要素在多邊形線圈當中依然存在。簡單的描述,就是兩彎角越近,則彎角中間的直線段外擴越嚴重;漆包線越粗,代表線材越不容易彎折,也會增加
Thumbnail
本處的方形空心線圈泛指四邊形,包括正方形、長方形及梯形等;方形空心線圈的型態與馬達繞線較為相似,主要是馬達矽鋼片留給線圈的走線空間皆為四邊形,故兩者往往會有相同的問題,在直線區段的線圈會有種向外膨起的現象。 理想的方形空心線圈應當是等距的層疊,最終完成的形狀應如下圖當中最左側的範例。然而在實務執行
Thumbnail
本文來討論絕緣破壞的第二種情況,一般常稱為層間短路(Layer-Short)。 層間短路與耐壓不良的差異,主要是層間短路屬於導電線圈內的漏電問題,主要是造成漆包線圈燒毀、失火的危害;而耐壓不良則是直接漏電到外部的金屬零件上,會直接造成觸電危險。 層間短路的發生,就是當馬達內部有多組線圈,原本電流
Thumbnail
本文將從電流密度(Current Density)的觀點來決定漆包線徑的粗細;實務上要考量更為複雜,包括工作電壓、絕緣強度及法規、尺寸限制、加工能力等等,因此拆分不同主題來進行探討。 電流密度的基本定義可以簡單地從單位上面得知,這也是筆者在研究所時期的體驗之一,單位很重要,不僅僅是用來標示,更多時
Thumbnail
在之前的文章中已經有提到細線併繞將會導致槽滿率的下降,本文就來深究其原因。 追根究柢就是因為多線併繞時,往往會於繞線的過程中,自然而然的產生類絞線排列,反倒使原本理想中的細線排列分佈,絞成了一個大圓線的配置,導致更多的間隙使得馬達槽滿率下降。 在線徑與並聯股數換算中有一個計算例,是4股的0.3m
Thumbnail
常常有人在詢問,馬達繞線時的張力如何調整。實務上其實只要確認電阻值即可作為張力調整的依據,但本文則以較為學術的觀點,來討論繞線張力的理論值。 在討論力量之前,需要先了解銅線受力之後的變化,可參考金屬材料應力應變圖,其中X軸的應變就是代表材料變形狀態,Y軸的應力就是指力量大小的變化。可觀察到一般材料
Thumbnail
本文來探討細線對於馬達特性的影響。 其實身為一位馬達設計者,腦中應該就不會有細線的選項,這點可以由最基本的馬達轉矩公式就可一窺其原因;其中跟馬達漆包線圈有直接關聯的參數僅有圈數(N),這代表圈數越多,則轉矩就越大。而另一個間接會影響到的參數為電流(I),主要是歐姆定律告知我們,在固定輸入電壓(V)
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
每當有人詢問筆者,馬達線材可承受的最大電流是多少? 腦中的第一個想法是要優先確認目標線材,馬達當中會有兩種線材需要確認電流狀況,分別為出口線及漆包線。若是詢問出口線的部分,那十分簡單,查閱電工法規就會告知多少電流需要使用多粗的線徑,甚至連絕緣皮膜的種類耐溫規範都直接規定,只需要照表操課就可以,如下圖
Thumbnail
無論是何種線圈加工,後續仍有組裝及接線的工作得處理,然電子線相比於空心線圈會多了一個絕緣塑膠架部分,反而增加了些許不確定要素,因此特別提出討論說明。 由下圖所示,可知單一的電子線圈製作完成後,還須放置於對應的機構尺寸當中,經過多次組工序後才是完成品;倘若個別塑膠有產生了尺寸的變化,就有可能導致電子
Thumbnail
對筆者而言,電子線圈與空心線圈的差異,僅在是否連同絕緣塑膠架一併繞線,除此之外的繞線工藝皆如出一轍。但也因為絕緣塑膠架的加入,其實對量產而言,多了一個不穩定因素;過往經驗曾遇過塑膠架太薄,繞完後的漆包線圈過於緊迫,竟然造成塑膠架變形的詭異情況;亦有製造穩定性不足,塑膠架尺寸差異過大,進而影響到電子線
Thumbnail
多邊形空心線圈十分類似方形線圈,同樣會有個線圈外膨的現象,使得完成線型可能不如預期。在方形空心線圈的討論文章中,著重討論的是兩彎角之間的距離及漆包線徑的剛性強度影響,這些要素在多邊形線圈當中依然存在。簡單的描述,就是兩彎角越近,則彎角中間的直線段外擴越嚴重;漆包線越粗,代表線材越不容易彎折,也會增加
Thumbnail
本處的方形空心線圈泛指四邊形,包括正方形、長方形及梯形等;方形空心線圈的型態與馬達繞線較為相似,主要是馬達矽鋼片留給線圈的走線空間皆為四邊形,故兩者往往會有相同的問題,在直線區段的線圈會有種向外膨起的現象。 理想的方形空心線圈應當是等距的層疊,最終完成的形狀應如下圖當中最左側的範例。然而在實務執行
Thumbnail
本文來討論絕緣破壞的第二種情況,一般常稱為層間短路(Layer-Short)。 層間短路與耐壓不良的差異,主要是層間短路屬於導電線圈內的漏電問題,主要是造成漆包線圈燒毀、失火的危害;而耐壓不良則是直接漏電到外部的金屬零件上,會直接造成觸電危險。 層間短路的發生,就是當馬達內部有多組線圈,原本電流
Thumbnail
本文將從電流密度(Current Density)的觀點來決定漆包線徑的粗細;實務上要考量更為複雜,包括工作電壓、絕緣強度及法規、尺寸限制、加工能力等等,因此拆分不同主題來進行探討。 電流密度的基本定義可以簡單地從單位上面得知,這也是筆者在研究所時期的體驗之一,單位很重要,不僅僅是用來標示,更多時
Thumbnail
在之前的文章中已經有提到細線併繞將會導致槽滿率的下降,本文就來深究其原因。 追根究柢就是因為多線併繞時,往往會於繞線的過程中,自然而然的產生類絞線排列,反倒使原本理想中的細線排列分佈,絞成了一個大圓線的配置,導致更多的間隙使得馬達槽滿率下降。 在線徑與並聯股數換算中有一個計算例,是4股的0.3m
Thumbnail
常常有人在詢問,馬達繞線時的張力如何調整。實務上其實只要確認電阻值即可作為張力調整的依據,但本文則以較為學術的觀點,來討論繞線張力的理論值。 在討論力量之前,需要先了解銅線受力之後的變化,可參考金屬材料應力應變圖,其中X軸的應變就是代表材料變形狀態,Y軸的應力就是指力量大小的變化。可觀察到一般材料
Thumbnail
本文來探討細線對於馬達特性的影響。 其實身為一位馬達設計者,腦中應該就不會有細線的選項,這點可以由最基本的馬達轉矩公式就可一窺其原因;其中跟馬達漆包線圈有直接關聯的參數僅有圈數(N),這代表圈數越多,則轉矩就越大。而另一個間接會影響到的參數為電流(I),主要是歐姆定律告知我們,在固定輸入電壓(V)